5 results match your criteria: "Research Institute of Molecular Pharmacology FMP[Affiliation]"

Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) causes coronavirus disease 2019 (COVID-19), which became a pandemic in late 2019 and early 2020. Apart from many other symptoms of this infection, such as loss of smell and taste, rashes, body aches, fatigue, and psychological and cardiac symptoms, it also causes vasodilation in response to inflammation via nitric oxide release. SARS CoV-2 affects microcirculation, resulting in the swelling and damage of endothelial cells, micro thrombosis, constriction of capillaries, and damage to pericytes that are vital for the integrity of capillaries, angiogenesis, and the healing process.

View Article and Find Full Text PDF

Background: Peeling skin syndrome type 1 (PSS1) is a rare and severe autosomal recessive form of congenital ichthyosis. Patients are affected by pronounced erythroderma accompanied by pruritus and superficial generalized peeling of the skin. The disease is caused by nonsense mutations or complete deletion of the CDSN gene encoding for corneodesmosin (CDSN).

View Article and Find Full Text PDF

We establish high-sensitivity isothermal titration calorimetry (ITC) as a fast, reliable, and versatile tool for assessing membrane translocation of charged compounds. A combination of ITC uptake and release titrations can discriminate between the two extreme cases of half-sided binding and complete transbilayer equilibration on the experimental time scale. To this end, we derive a general fit function for both assays that allows for incorporation of different membrane partitioning models.

View Article and Find Full Text PDF

The classical three-stage model of membrane solubilization, including mixed membranes, membrane-micelle coexistence, and mixed micelles, is not applicable to demixed, domain-forming membranes and must, therefore, fail to describe the phenomenon of detergent-resistant membranes (DRMs). In lack of a quantitative model, it has often been assumed that ordered, detergent-depleted domains are inert, whereas fluid domains are solubilized. We establish a quantitative model based on equilibrium thermodynamics that is analogous to the three-stage model but comprises three components (two lipids and one detergent) in four phases (liquid-ordered and liquid-disordered membranes, micelles, and detergent in aqueous solution).

View Article and Find Full Text PDF