6 results match your criteria: "Research Institute for Sustainable Humanosphere Kyoto University[Affiliation]"

α-Tomatine is a major saponin that accumulates in tomatoes (). We previously reported that α-tomatine secreted from tomato roots modulates root-associated bacterial communities, particularly by enriching the abundance of belonging to the family . To further characterize the α-tomatine-mediated interactions between tomato plants and soil bacterial microbiota, we first cultivated tomato plants in pots containing different microbial inoculants originating from three field soils.

View Article and Find Full Text PDF

Isoflavones and soyasaponins are major specialized metabolites accumulated in soybean roots and secreted into the rhizosphere. Unlike the biosynthetic pathway, the transporters involved in metabolite secretion remain unknown. The developmental regulation of isoflavone and soyasaponin secretions has been recently reported, but the diurnal regulation of their biosynthesis and secretion still needs to be further studied.

View Article and Find Full Text PDF

We investigate the forces and atmosphere-ionosphere coupling that create atmospheric dynamo currents using two rockets launched nearly simultaneously on 4 July 2013 from Wallops Island (USA), during daytime Sq conditions with ΔH of -30 nT. One rocket released a vapor trail observed from an airplane which showed peak velocities of >160 m/s near 108 km and turbulence coincident with strong unstable shear. Electric and magnetic fields and plasma density were measured on a second rocket.

View Article and Find Full Text PDF

Soyasaponins are triterpenoid saponins widely found in legume plants. These compounds have drawn considerable attention because they have various activities beneficial for human health, and their biosynthesis has been actively studied. In our previous study, we found that legume plants including soybean secrete soyasaponins from the roots in hydroponic culture throughout the growth period, but the physiological roles of soyasaponins in the rhizosphere and their fate in soil after exudation have remained unknown.

View Article and Find Full Text PDF

Despite our understanding of chemical defenses and their consequences for plant performance and herbivores, we know little about whether defensive chemicals in plant tissues, such as alkaloids, and their spatial variation within a population play unappreciated and critical roles in plant-herbivore interactions. Neighboring plants can decrease or increase attractiveness of a plant to herbivores, an example of a neighborhood effect. Chemical defensive traits may contribute to neighborhood effects in plant-herbivore interactions.

View Article and Find Full Text PDF

ATP-binding cassette (ABC) proteins constitute a large family in plants with more than 120 members each in Arabidopsis and rice, and have various functions including the transport of auxin and alkaloid, as well as the regulation of stomata movement. In this report, we carried out genome-wide analysis of ABC protein genes in a model legume plant, Lotus japonicus. For analysis of the Lotus genome sequence, we devised a new method 'domain-based clustering analysis', where domain structures like the nucleotide-binding domain (NBD) and transmembrane domain (TMD), instead of full-length amino acid sequences, are used to compare phylogenetically each other.

View Article and Find Full Text PDF