17 results match your criteria: "Research Institute for Biological Safety Problems (RIBSP)[Affiliation]"

In the winter of 2023/2024, the mass death of swans was observed on Lake Karakol on the eastern coast of the Caspian Sea. From 21 December 2023 to 25 January 2024, 1132 swan corpses (, ) were collected and disposed of on the coast by veterinary services and ecologists. Biological samples were collected from 18 birds for analysis at different dates of the epizootic.

View Article and Find Full Text PDF

Coding Complete Genome Sequence of the SARS-CoV-2 Virus Strain, Variant B.1.1, Sampled from Kazakhstan.

Microbiol Resour Announc

December 2022

Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut, USA.

This article describes the results of sequencing and analysis of the entire genome of the SARS-CoV-2 virus sampled in Kazakhstan in 2021. The whole-genome sequence of the strain was 29,751 bp. According to the results of phylogenetic analysis (according to the Pangolin COVID-19 database), the SARS-CoV-2/human/KAZ/B1.

View Article and Find Full Text PDF

Here, we reported the complete coding sequence of the influenza A/equine/Otar/3/2007 (H3N8) equine virus, first isolated in Kazakhstan in 2007. The hemagglutinin (HA) sequences of the Kazakhstan isolates appeared to be closely related to viruses isolated in early 2000 in Asia. Phylogenetic analysis characterized the Kazakhstan isolates as a member of the Florida sublineage clade 2 by the HA protein sequence.

View Article and Find Full Text PDF

This research describes the genome sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) obtained from a patient with symptoms of coronavirus disease 2019 (COVID-19) who was infected in the Republic of Kazakhstan. Strain SARS-CoV-2/human/KAZ/Britain/2021 consists of 29,815 nucleotides and belongs to lineage B.1.

View Article and Find Full Text PDF

An active surveillance study of avian influenza viruses (AIVs) in wild birds was carried out in Kazakhstan in 2018-2019. In total, 866 samples were collected from wild birds and analyzed for influenza viruses using molecular and virological tests. Genome segments of Asian, European, and Australian lineages were detected in 25 (4.

View Article and Find Full Text PDF

This article describes the results of a preclinical safety and immunogenicity study of QazCovid-in®, the first COVID-19 vaccine developed in Kazakhstan, on BALB/c mice, rats, ferrets, Syrian hamsters and rhesus macaques (). The study's safety data suggests that this immunobiological preparation can be technically considered a Class 5 nontoxic vaccine. The series of injections that were made did not produce any adverse effect or any change in the general condition of the model animals' health, while macroscopy and histology studies identified no changes in the internal organs of the BALB/c mice and rats.

View Article and Find Full Text PDF

We report the complete coding genome sequence of the influenza A/H3N8 virus, isolated from in northern Kazakhstan in 2018. Phylogenetic analysis of the surface antigens of strain A/garganey/North-Kazakhstan/45/2018 showed that its hemagglutinin belonged to the Asian line, while its neuraminidase was assigned to the Eurasian group.

View Article and Find Full Text PDF

We report the near-complete genome sequence of an influenza H5N1 virus strain isolated from a dead swan on the southeastern Caspian seashore in 2006. The results of the surface protein HA phylogenetic analysis showed that the A/swan/Mangystau/3/2006 virus belongs to the EA-nonGsGD clade.

View Article and Find Full Text PDF

Here, we present the complete genome sequence of a highly pathogenic strain of avian influenza A virus/domestic goose/Pavlodar/1/05 (H5N1) (GS/1/05), which belongs to clade 2.2. This strain of the influenza virus was isolated in northern Kazakhstan in 2005.

View Article and Find Full Text PDF

This paper describes a preclinical study analyzing the immunogenicity and protective efficacy of Kazfluvac, an adjuvant-based inactivated pandemic influenza A/H5N1 virus vaccine. In this study, laboratory animals (ferrets and mice) were vaccinated by the intramuscular or intraperitoneal route at an interval of 14 days with two doses of the vaccine containing different concentrations of influenza virus hemagglutinin (HA) protein. HA protein without adjuvant (aluminum hydroxide and Merthiolate) was used as a control.

View Article and Find Full Text PDF

Complete Genome Sequencing of Two Equine Influenza A(H3N8) Virus Strains Isolated in Kazakhstan.

Genome Announc

June 2018

Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut, USA

Here, we report the complete genome sequencing of strains A/equine/Kostanay/9/2012(H3N8) and A/equine/LKZ/9/2012(H3N8) of the equine influenza virus belonging to Florida sublineage, clade 2. The strains were isolated in 2012 in the northern and southern regions of Kazakhstan, respectively.

View Article and Find Full Text PDF

The evidence of occurrence of porcine circovirus 2 isolation and characterization in Kazakhstan.

Virusdisease

March 2018

Research Institute for Biological Safety Problems (RIBSP), Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Kordaiskiy rayon, Gvardeyskiy, Zhambylskaya oblast Kazakhstan 080409.

This report describes the first isolation and characterization of porcine circovirus 2 (PCV2) in the Republic of Kazakhstan. The virus was isolated from a dead piglet that did not exhibit any typical clinical symptoms of porcine circovirus disease at a pig factory in North Kazakhstan oblast (region). The isolated virus belongs to genotype 2 (PCV2) and shares 96.

View Article and Find Full Text PDF

Background: We developed a new oligonucleotide microarray comprising 16 identical subarrays for simultaneous rapid detection of avian viruses: avian influenza virus (AIV), Newcastle disease virus (NDV), infection bronchitis virus (IBV), and infectious bursal disease virus (IBDV) in single- and mixed-virus infections. The objective of the study was to develop an oligonucleotide microarray for rapid diagnosis of avian diseases that would be used in the course of mass analysis for routine epidemiological surveillance owing to its ability to test one specimen for several infections.

Methods And Results: The paper describes the technique for rapid and simultaneous diagnosis of avian diseases such as avian influenza, Newcastle disease, infectious bronchitis and infectious bursal disease with use of oligonucleotide microarray, conditions for hybridization of fluorescent-labelled viral cDNA on the microarray and its specificity tested with use of AIV, NDV, IBV, IBDV strains as well as biomaterials from poultry.

View Article and Find Full Text PDF

Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

J Control Release

February 2017

Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery.

View Article and Find Full Text PDF

The efficacy of a novel BEI-inactivated porcine reproductive and respiratory syndrome virus (PRRSV) candidate vaccine in pigs, developed at RIBSP Republic of Kazakhstan and delivered with an adjuvant Montanide™ Gel 01 ST (D/KV/ADJ) was compared with a commercial killed PRRSV vaccine (NVDC-JXA1, C/KV/ADJ) used widely in swine herds of the Republic of Kazakhstan. Clinical parameters (body temperature and respiratory disease scores), virological and immunological profiles [ELISA and virus neutralizing (VN) antibody titers], macroscopic lung lesions and viral load in the lungs (quantitative real-time PCR and cell culture assay) were assessed in vaccinated and both genotype 1 and 2 PRRSV challenged pigs. Our results showed that the commercial vaccine failed to protect pigs adequately against the clinical disease, viremia and lung lesions caused by the challenged field isolates, Kazakh strains of PRRSV type 1 and type 2 genotypes.

View Article and Find Full Text PDF

Comparative evaluation of effectiveness of IAVchip DNA microarray in influenza A diagnosis.

ScientificWorldJournal

July 2015

Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popov Street 15/17, Saint Petersburg 197376, Russia.

The paper describes comparative evaluation of IAVchip DNA microarray, reverse transcription PCR (RT-PCR), and real-time RT-PCR versus virus isolation in chicken embryos and shows their diagnostic effectiveness in detection and subtyping of influenza A virus. The tests were evaluated with use of 185 specimens from humans, animals, and birds. IAVchip DNA microarray demonstrates higher diagnostic effectiveness (99.

View Article and Find Full Text PDF

We previously created a live vaccine against equine influenza based the new reassortant cold-adapted (Ca) strain A/HK/Otar/6:2/2010. The live vaccine contains surface proteins (HA, NA) from the wild-type virus A/equine/Otar/764/2007 (Н3N8; American Lineage Florida Clade 2), and internal proteins (PB2, PB1, PA, NP, M, NS) from the attenuated Ca donor virus A/Hong Kong/1/68/162/35CA (H3N2). To determine the safety and duration of the protective immune responses, 90 yearlings were intranasally vaccinated in single mode, double mode at an interval of 42 days (10(7.

View Article and Find Full Text PDF