4 results match your criteria: "Research Institute Hospital 12 Octubre (imas12)[Affiliation]"

This study investigates kidney transplant outcomes in highly sensitised patients after implementing a delisting strategy aimed at enabling transplantation despite preformed donor-specific antibodies (preDSA), with the goal of reducing acute antibody-mediated rejection (aAMR) risk. Fifty-three sensitised recipients underwent kidney transplant after delisting prohibited HLA antigens, focusing initially in low MFI antibodies (<5000), except for anti-HLA-DQ. If insufficient, higher MFI antibodies were permitted, especially for those without an immunogenic eplet pattern assigned.

View Article and Find Full Text PDF

By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggests that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces.

View Article and Find Full Text PDF

Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders).

View Article and Find Full Text PDF

Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges.

Arch Biochem Biophys

May 2021

Department of Biochemistry and Molecular Biology, Faculty of Biology and Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain. Electronic address:

Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS.

View Article and Find Full Text PDF