65 results match your criteria: "Research Institute AMPRI[Affiliation]"

Recently, two-dimensional (2D)-borophene has emerged as a remarkable translational nanomaterial substituting its predecessors in the field of biomedical sensors, diagnostic tools, high-performance healthcare devices, super-capacitors, and energy storage devices. Borophene justifies its demand due to high-performance and controlled optical, electrical, mechanical, thermal, and magnetic properties as compared with other 2D-nanomaterials. However, continuous efforts are being made to translate theoretical and experimental knowledge into pragmatic platforms.

View Article and Find Full Text PDF

The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak.

View Article and Find Full Text PDF

Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern.

Curr Opin Biomed Eng

March 2022

NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA.

The increased severity of the COVID-19 infection due to new SARS-CoV-2 variants has resonated pandemic impact which made health experts to re-evaluate the effectiveness of pandemic management strategies. This becomes critical owing to the infection in large population and shortcomings in the existing global healthcare system worldwide. The designing of high-performance nanosystems (NS) with tunable performances seems to be the most efficient method to tackle infectious SARS-CoV-2 variants including recently emerged omicron mutation.

View Article and Find Full Text PDF

Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications.

View Article and Find Full Text PDF

It has been proven that rapid bioinformatics analysis according to patient health profiles, in addition to biomarker detection at a low level, is emerging as essential to design an analytical diagnostics system to manage health intelligently in a personalized manner. Such objectives need an optimized combination of a nano-enabled sensing prototype, artificial intelligence (AI)-supported predictive analysis, and Internet of Medical Things (IoMT)-based bioinformatics analysis. Such a developed system began with a prototype demonstration of efficient diseases diagnostics performance is the future diseases management approach.

View Article and Find Full Text PDF

The materials used in electrical and electronic applications have great importance and broader applications, but they have severe electromagnetic interference (EMI). These materials have extensive applications in broadcasting, medical industries, research, defence sectors, communication and similar fields. The EMI can be addressed by using effective EMI shielding materials.

View Article and Find Full Text PDF

The importance of early diagnosis of infectious disease has been revealed well by the COVID-19 pandemic. The current methods for testing SARS-CoV-2 mainly utilize biorecognition elements. The process of production of these biorecognition elements is not only tedious, time-consuming but also costly.

View Article and Find Full Text PDF

This work reports the preparation of nano lignin-rich fraction material via green technology from the holistic use of lignocellulosic biomass bamboo. The bamboo is first chemically treated, followed by acid precipitation to extract bamboo-derived macro lignin-rich fraction material. The nano lignin-rich fraction material was then prepared via ultrasonication technique from the extracted bamboo-derived macro lignin-rich fraction material.

View Article and Find Full Text PDF

Abstract: Organ or cell transplantation is medically evaluated for end-stage failure saving or extending the lives of thousands of patients who are suffering from organ failure disorders. The unavailability of adequate organs for transplantation to meet the existing demand is a major challenge in the medical field. This led to day-day-increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the queue.

View Article and Find Full Text PDF

Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged.

View Article and Find Full Text PDF

High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study.

J Mater Chem B

June 2021

Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively.

View Article and Find Full Text PDF

Coronavirus disease (COVID-19) is an emerging and highly infectious disease making global public health concern and socio-economic burden. It is caused due to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). It has the tendency to spread rapidly through person-to-person.

View Article and Find Full Text PDF

Breast cancer is the most commonly occurring cancer among women which leads to thousands of deaths worldwide. The chances of survival are more if the breast cancer is diagnosed at early stage. At present, mammography, magnetic resonance imaging, ultrasound and tissue biopsies are the main diagnostic techniques available for the detection of breast cancer.

View Article and Find Full Text PDF

Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes.

Food Chem

December 2020

Department of Physics, Central University of Rajasthan, NH-8 Bandarsindri, Ajmer 305817, Rajasthan, India. Electronic address:

Fiber optic surface plasmon resonance (SPR) sensor utilizing silver (Ag) and Ag-graphene oxide (GO) is designed and developed for the detection of adulteration of glucose and fructose in pure honey. The concentration range of the two adulterants in pure honey is varied from 4% to 20% with a step change of 4%. The experiments were performed with two different fiber optic probes viz.

View Article and Find Full Text PDF

The present study deals with the estimation of the anti-HIV activity (log1/C) of a large set of 107 HEPT analogues using molecular descriptors which are responsible for the anti-HIV activity. The study has been undertaken by three techniques MLR, ANN, and SVM. The MLR model fits the train set with R (2)=0.

View Article and Find Full Text PDF