165 results match your criteria: "Research Centre for Biomedical Engineering[Affiliation]"

While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.

View Article and Find Full Text PDF

Rapid optical determination of salivary cortisol responses in individuals undergoing physiological and psychological stress.

Sci Rep

December 2024

Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.

Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.

View Article and Find Full Text PDF

Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.

View Article and Find Full Text PDF

Objective: This study evaluated the effectiveness of laser Doppler flowmetry (LDF) in detecting perfusion disturbances during microvascular free tissue transfer.

Methods: Conducted at a single centre from December 2020 to September 2022, this prospective study involved 71 patients mainly undergoing head and neck free flap reconstructions, using the Pocket LDF™ for continuous perfusion monitoring.

Results: Out of the 71 cases, data from 69 cases were analysed after excluding those with significant noise or sensor detachment.

View Article and Find Full Text PDF

Background: To overcome the application limitations of functional electrical stimulation (FES), such as fatigue or nonlinear muscle response, the combination of neuroprosthetic systems with robotic devices has been evaluated, resulting in hybrid systems that have promising potential. However, current technology shows a lack of flexibility to adapt to the needs of any application, context or individual. The main objective of this study is the development of a new modular neuroprosthetic system suitable for hybrid FES-robot applications to meet these needs.

View Article and Find Full Text PDF

Significance: Questions about the accuracy of pulse oximeters in measuring arterial oxygen saturation ( ) in individuals with darker skin pigmentation have resurfaced since the COVID-19 pandemic. This requires investigation to improve patient safety, clinical decision making, and research.

Aim: We aim to use computational modeling to identify the potential causes of inaccuracy in measurement in individuals with dark skin and suggest practical solutions to minimize bias.

View Article and Find Full Text PDF

Bioimpedance is a diagnostic sensing method used in medical applications, ranging from body composition assessment to detecting skin cancer. Commonly, discrete-component (and at times integrated) circuit variants of the Howland Current Source (HCS) topology are employed for injection of an AC current. Ideally, its amplitude should remain within 1% of its nominal value across a frequency range, and that nominal value should be programmable.

View Article and Find Full Text PDF

Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma-Derived Oxidants in an In Ovo Cancer Model.

Macromol Biosci

November 2024

Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain.

Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP-treated hydrogels (PTHs) are being explored for the local administration of CAP-derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models.

View Article and Find Full Text PDF
Article Synopsis
  • Vascular ageing is when our blood vessels become older and don’t work as well, which happens naturally as we get older but can get worse with diseases.
  • Scientists are starting to look at how we can measure vascular ageing to help find out if someone is at risk for heart problems and to help doctors decide on treatments.
  • Experts are working on new technology to measure vascular ageing better and are trying to figure out how to use this information in hospitals and for future research.
View Article and Find Full Text PDF

Joint contact forces during semi-recumbent seated cycling.

J Biomech

May 2024

Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia. Electronic address:

Semi-recumbent cycling performed from a wheelchair is a popular rehabilitation exercise following spinal cord injury (SCI) and is often paired with functional electrical stimulation. However, biomechanical assessment of this cycling modality is lacking, even in unimpaired populations, hindering the development of personalised and safe rehabilitation programs for those with SCI. This study developed a computational pipeline to determine lower limb kinematics, kinetics, and joint contact forces (JCF) in 11 unimpaired participants during voluntary semi-recumbent cycling using a rehabilitation ergometer.

View Article and Find Full Text PDF

Photoplethysmography (PPG) uses light to detect volumetric changes in blood, and is integrated into many healthcare devices to monitor various physiological measurements. However, an unresolved limitation of PPG is the effect of skin pigmentation on the signal and its impact on PPG based applications such as pulse oximetry. Hence, an in-silico model of the human finger was developed using the Monte Carlo (MC) technique to simulate light interactions with different melanin concentrations in a human finger, as it is the primary determinant of skin pigmentation.

View Article and Find Full Text PDF

Age-related vessel deterioration leads to changes in the structure and function of the heart and blood vessels, notably stiffening of vessel walls, increasing the risk of developing cardiovascular disease (CVD), which accounts for 17.9 million global deaths annually. This study describes the fabrication of custom-made silicon vessels with varying mechanical properties (arterial stiffness).

View Article and Find Full Text PDF

Human skin acts as a protective barrier, preserving bodily functions and regulating water loss. Disruption to the skin barrier can lead to skin conditions and diseases, emphasizing the need for skin hydration monitoring. The gold-standard sensing method for assessing skin hydration is the Corneometer, monitoring the skin's electrical properties.

View Article and Find Full Text PDF

Background: In recent years, there has been an increasing focus on enhancing frontline health professionals' ability to think and act innovatively, also known as their creative performance. However, previous research has had two limitations. First, only a few leadership styles and their associations with this capability have been examined.

View Article and Find Full Text PDF

Purpose: In this research, a non-invasive intracranial pressure (nICP) optical sensor was developed and evaluated in a clinical pilot study. The technology relied on infrared light to probe brain tissue, using photodetectors to capture backscattered light modulated by vascular pulsations within the brain's vascular tissue. The underlying hypothesis was that changes in extramural arterial pressure could affect the morphology of recorded optical signals (photoplethysmograms, or PPGs), and analysing these signals with a custom algorithm could enable the non-invasive calculation of intracranial pressure (nICP).

View Article and Find Full Text PDF

Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks.

Acta Biomater

March 2024

Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Av. Eduard Maristany, 16, Barcelona 08019, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain. Electronic address:

The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self-hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain the leading cause of global mortality, therefore understanding arterial stiffness is essential to developing innovative technologies to detect, monitor and treat them. The ubiquitous spread of photoplethysmography (PPG), a completely non-invasive blood-volume sensing technology suitable for all ages, highlights immense potential for arterial stiffness assessment in the wider healthcare setting outside specialist clinics, for example during routine visits to a General Practitioner or even at home with the use of mobile and wearable health devices. This study employs a custom-manufactured in vitro cardiovascular system with vessels of varying stiffness to test the hypothesis that PPG signals may be used to detect and assess the level of arterial stiffness under controlled conditions.

View Article and Find Full Text PDF

Fetoscopic Laser Coagulation (FLC) for Twin to Twin Transfusion Syndrome is a challenging intervention due to the working conditions: low quality images acquired from a 3 mm fetoscope inside a turbid liquid environment, local view of the placental surface, unstable surgical field and delicate tissue layers. FLC is based on locating, coagulating and reviewing anastomoses over the placenta's surface. The procedure demands the surgeons to generate a mental map of the placenta with the distribution of the anastomoses, maintaining, at the same time, precision in coagulation and protecting the placenta and amniotic sac from potential damages.

View Article and Find Full Text PDF

Photoplethysmography for the Assessment of Arterial Stiffness.

Sensors (Basel)

December 2023

Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK.

This review outlines the latest methods and innovations for assessing arterial stiffness, along with their respective advantages and disadvantages. Furthermore, we present compelling evidence indicating a recent growth in research focused on assessing arterial stiffness using photoplethysmography (PPG) and propose PPG as a potential tool for assessing vascular ageing in the future. Blood vessels deteriorate with age, losing elasticity and forming deposits.

View Article and Find Full Text PDF

Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy.

Int J Biol Macromol

February 2024

Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain. Electronic address:

Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS.

View Article and Find Full Text PDF

Dynamic evaluation of spine kinematics in individuals with Parkinson's disease and freezing of gait.

Gait Posture

February 2024

Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, Milano, Italy.

Background: Freezing of gait (FoG) is an episodic failure of gait exposing people with Parkinson's disease (PD) to a high risk of falling. Despite growing evidence of the interconnection between impaired trunk control and FoG, a detailed description of spinal kinematics during walking is still lacking in this population.

Research Question: Do spinal alterations impact gait performance in individuals with PD and FoG?

Methods: We analyzed kinematic data of 47 PD participants suffering (PD-FOG, N = 24) or not suffering from FoG (PD-NFOG, N = 23) and 15 healthy controls (HCO) during quiet standing and unperturbed walking.

View Article and Find Full Text PDF

Upper Extremity Muscle Activation Pattern Prediction Through Synergy Extrapolation and Electromyography-Driven Modeling.

J Biomech Eng

January 2024

Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409.

Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques.

View Article and Find Full Text PDF