6 results match your criteria: "Research Center for Intelligent Supercomputing[Affiliation]"

Unsteady respiratory airflow characteristics play a crucial role in understanding the deposition of toxic particles and inhaled aerosol drugs in the human respiratory tract. Considering the variations in respiratory flow rate and glottis motion under different respiratory frequencies, these respiratory airflow characteristics are studied by large-eddy simulations, including pressure field, power loss, modal spatial patterns, and vortex structures. Firstly, the results reveal that varying respiratory frequencies significantly affect airflow unsteadiness, turbulent evolution, and vortex structure dissipation, as they increase the complexity and butterfly effect introduced by the turbulent disturbance.

View Article and Find Full Text PDF

Semilocal density-functional approximations (DFAs), including the state-of-the-art SCAN functional, are plagued by the self-interaction error (SIE). While this error is explicitly defined only for one-electron systems, it has inspired the self-interaction correction method proposed by Perdew and Zunger (PZ-SIC), which has shown promise in mitigating the many-electron SIE. However, the PZ-SIC method is known for its significant numerical instability.

View Article and Find Full Text PDF

We investigate the dynamical quantum phase transition (DQPT) in the multi-band Bloch Hamiltonian of the one-dimensional periodic Kitaev model, focusing on quenches from a Bloch band. By analyzing the dynamical free energy and Pancharatnam geometric phase (PGP), we show that the critical times of DQPTs deviate from periodic spacing due to the multi-band effect, contrasting with results from two-band models. We propose a geometric interpretation to explain this non-uniform spacing.

View Article and Find Full Text PDF

To enhance the understanding of airflow characteristics in the human respiratory system, the expiratory airflow in a human respiratory tract model was simulated using large eddy simulation and dynamic mesh under different expiration conditions aligned with clinically measured data. The airflow unsteadiness was quantitatively assessed using power spectral density (PSD) and spectral entropy (SE). The following findings were obtained: (1) The airflow is highly turbulent in the mouth-pharynx region during expiration, with its dynamic characteristics being influenced by both the transient expiration flow pattern at mouth piece and the glottis motion.

View Article and Find Full Text PDF

XYG3-type doubly hybrid (xDH) approximations have gained widespread recognition for their accuracy in describing a diverse range of chemical and physical interactions. However, a recent study [Song et al., J.

View Article and Find Full Text PDF

Introduction: Due to the wide variation in the prognosis of autosomal dominant polycystic kidney disease (ADPKD), prediction of risk of renal survival in ADPKD patients is a tough challenge. We aimed to establish a nomogram for the prediction of renal survival in ADPKD patients.

Methods: We conducted a retrospective observational cohort study in 263 patients with ADPKD.

View Article and Find Full Text PDF