22 results match your criteria: "Research Center Magnetic-Resonance-Bavaria (MRB)[Affiliation]"

Purpose: 4D perfusion magnetic resonance imaging (MRI) with intravenous injection of contrast agent allows for a radiation-free assessment of regional lung function. It is therefore a valuable method to monitor response to treatment in patients with chronic obstructive pulmonary disease (COPD). This study was designed to evaluate its potential for monitoring short-term response to hyperoxia in COPD patients.

View Article and Find Full Text PDF

Objective: Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes.

View Article and Find Full Text PDF

Purpose: To present a technique, which allows for the in vivo quantification of the spectral line broadening of the human lung in a single breathhold. The line broadening is an interesting parameter of the lung because it can provide information about important lung properties, namely: inflation and oxygen uptake. The proposed technique integrates the asymmetric spin-echo (ASE) approach, which is commonly used to quantify the line broadening, with a single shot turbo spin-echo pulse sequence with half-Fourier acquisition (HASTE), to reduce the acquisition times.

View Article and Find Full Text PDF

Objective: In this work, a prototype of an effective electromagnet with a field-of-view (FoV) of 140 mm for neonatal head imaging is presented. The efficient implementation succeeded by exploiting the use of steel plates as a housing system. We achieved a compromise between large sample volumes, high homogeneity, high B0 field, low power consumption, light weight, simple fabrication, and conserved mobility without the necessity of a dedicated water cooling system.

View Article and Find Full Text PDF

Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability.

PLoS One

May 2016

Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany; Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany.

Purpose: Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lung MRI protocol in COPD.

View Article and Find Full Text PDF

Simultaneous multislice (SMS) imaging techniques.

Magn Reson Med

January 2016

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in-plane parallel imaging this can have only a marginal intrinsic signal-to-noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications.

View Article and Find Full Text PDF

Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging.

View Article and Find Full Text PDF

Purpose: Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry.

Methods: Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed.

View Article and Find Full Text PDF

Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion.

PLoS One

March 2016

Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany; Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany.

Purpose: Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI.

View Article and Find Full Text PDF

Purpose: In radial imaging, projections may become "miscentered" due to gradient errors such as delays and eddy currents. These errors may result in image artifacts and can disrupt the reliability of direct current (DC) navigation. The proposed parallel imaging-based technique retrospectively estimates trajectory error from miscentered radial data without extra acquisitions, hardware, or sequence modification.

View Article and Find Full Text PDF

Objective: To develop a self-gated free-breathing 3D sequence allowing for simultaneous T1-weighted imaging and quantitative T2* mapping in different breathing phases in order to assess the feasibility of oxygen-enhanced 3D functional lung imaging.

Materials And Methods: A 3D sequence with ultrashort echo times and interleaved double readouts was implemented for oxygen-enhanced lung imaging at 1.5 T.

View Article and Find Full Text PDF

Purpose: Recently, the (Resolution Enhanced-) T1 insensitive steady-state imaging (TOSSI) approach has been proposed for the fast acquisition of T2 -weighted images. This has been achieved by balanced steady-state free precession (bSSFP) imaging between unequally spaced inversion pulses. The purpose of this work is to present an extension of this technique, considerably increasing both the efficiency and possibilities of TOSSI.

View Article and Find Full Text PDF

Blood volume fraction imaging of the human lung using intravoxel incoherent motion.

J Magn Reson Imaging

May 2015

Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany; Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany.

Purpose: To present a technique for non-contrast-enhanced in vivo imaging of the blood volume fraction of the human lung. The technique is based on the intravoxel incoherent motion (IVIM) approach. However, a substantial novelty is introduced here: the need for external diffusion sensitizing gradients is eliminated by exploiting the internal magnetic field gradients typical of the lung tissue, due to magnetic susceptibility differences at air/tissue interfaces.

View Article and Find Full Text PDF

Objective: The quantification of magnetic resonance relaxation parameters T 1 and T 2 have the potential for improved disease detection and classification over standard clinical weighted imaging. Performing a mono-exponential fit on multi spin-echo (MSE) data provides quantitative T 2 values in a clinically acceptable scan-time. However, due to technical imperfections of refocusing pulses, stimulated echo contributions to the signals lead to significant deviations in the resulting T 2 values.

View Article and Find Full Text PDF

Purpose: Balanced steady-state free precession (bSSFP) imaging suffers from banding artifacts due to its inherent sensitivity to inhomogeneities in the main magnetic field. These artifacts can be removed by the acquisition of multiple images at different frequency offsets. However, conventional phase-cycling is hindered by a long scan time.

View Article and Find Full Text PDF

Purpose: Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information.

View Article and Find Full Text PDF

Purpose: To implement a regularization method for the phase-constrained generalized partially parallel acquisitions (GRAPPA) algorithm to reduce image artifacts caused by data inconsistencies.

Methods: Phase-constrained GRAPPA reconstructions are implemented through the use of virtual coils. To that end, synthetic virtual coils are generated by using complex conjugate symmetric signals from the actual coils.

View Article and Find Full Text PDF

Object: A new gradient system for earth's field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth's field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coils.

Materials And Methods: Two favorable orientations of the gradient system relative to the earth's magnetic field (parallel and perpendicular) are discussed.

View Article and Find Full Text PDF

Purpose: Parallel MRI methods are typically associated with a degradation of the signal-to-noise ratio (SNR). High scan time reduction factors are therefore restricted to applications with high intrinsic SNR. One possibility to increase the intrinsic SNR is to simultaneously excite several slices by means of multiband radio-frequency (RF) pulses and subsequently separate the slices by parallel MRI reconstruction algorithms.

View Article and Find Full Text PDF

Purpose: To develop a coil configuration for high-resolution imaging of different regions of the hand and wrist at 7 T.

Materials And Methods: A quadrature bandpass birdcage and a 12-channel high density receive array were developed for imaging metacarpus and wrist. Workbench and magnetic resonance imaging (MRI) measurements were done to characterize the coil and obtain in vivo images.

View Article and Find Full Text PDF

Object: To construct an optimised, high-density receive array and a movement device to achieve dynamic imaging of the knee in orthopedic large animal models (e.g., minipigs) at 1.

View Article and Find Full Text PDF

Autocalibrated parallel MRI methods such as TSENSE or k-t SENSE have been presented for dynamic imaging studies as they are able to provide images with high temporal resolution. One key element of these techniques is the temporal averaging of the undersampled raw data to obtain an unaliased image. This image represents the temporal average (also known as direct current, DC) and is used to derive the reconstruction parameters.

View Article and Find Full Text PDF