10,009 results match your criteria: "Republic of Singapore; National University of Singapore NUS[Affiliation]"

Chemical looping synthesis of amines from N via iron nitride as a mediator.

Nat Commun

January 2025

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.

Amines are commonly synthesized through the amination of organooxygenates using ammonia, frequently involving the use of noble metal catalysts. In this study, we present an alternative route to make amines using iron nitride (FeN) as the nitrogen source. Without any additional catalyst, FeN reacts with a range of alcohols at 250 °C under 1 or 10 bar H to produce amines as major products.

View Article and Find Full Text PDF

Pt/IrO enables selective electrochemical C-H chlorination at high current.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.

Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.

View Article and Find Full Text PDF

Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents.

ACS Appl Mater Interfaces

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design.

View Article and Find Full Text PDF

Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR).

J Nutr Health Aging

January 2025

Faculty of Medicine and Health, School of Health Sciences and Sydney Medical School, University of Sydney, New South Wales, Australia, and Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States.

Article Synopsis
  • Aging leads to physiological changes and increased disease vulnerability, culminating in higher mortality rates as individuals get older.
  • Regular physical activity (PA) and exercise can counteract aging effects, improve health span, and reduce the risk of chronic diseases such as heart disease and cancer.
  • Personalized exercise plans, including various forms of training like aerobic and resistance exercises, are essential for maintaining health and functionality in older adults, particularly those with age-related issues.
View Article and Find Full Text PDF

Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.

View Article and Find Full Text PDF

A Three-Dimensional, Flexible Conductive Network Based on an MXene/Rubber Composite for Lithium Metal Anodes.

ACS Appl Mater Interfaces

January 2025

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China.

Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site.

View Article and Find Full Text PDF

Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process.

View Article and Find Full Text PDF

iPSC-derived human sensory neurons reveal a subset of TRPV1 antagonists as anti-pruritic compounds.

Sci Rep

December 2024

Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.

Signaling interplay between the histamine 1 receptor (H1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in mediating histaminergic itch has been well-established in mammalian models, but whether this is conserved in humans remains to be confirmed due to the difficulties in obtaining human sensory neurons (SNs) for experimentation. Additionally, previously reported species-specific differences in TRPV1 function indicate that use of human SNs is vital for drug candidate screening to have a higher chance of identifying clinically effective TRPV1 antagonists. In this study, we built a histamine-dependent itch model using peripheral SNs derived from human induced pluripotent stem cells (hiPSC-SNs), which provides an accessible source of human SNs for pre-clinical drug screening.

View Article and Find Full Text PDF

SLAMF7 defines subsets of human effector CD8 T cells.

Sci Rep

December 2024

Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.

Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses.

View Article and Find Full Text PDF

Citric acid is more effective than sodium thiosulfate in chelating calcium in a dissolution model of calcinosis.

Sci Rep

December 2024

Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.

Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.

View Article and Find Full Text PDF

Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage.

View Article and Find Full Text PDF

Cholesterol (Cho) is commonly used to stabilize nanoliposomes; however, there is controversy on the relationship between Cho and health. In this study, we developed a novel multifunctional nanoliposome utilizing structurally similar sitogluside (SG) and dioscin (Dio) instead of Cho to anchor the phospholipid bilayer and synergistically modulate the membrane properties of the nanoliposome (DPPC or DOPC). The storage and gastrointestinal tract stability experiment demonstrated that the changes of physical and chemical properties, including the significantly reduced size and Dio retention rate of nanoliposomes synergistically modulated by SG and Dio compared to those of SG alone, regulated nanoliposomes.

View Article and Find Full Text PDF

Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles.

RNA Biol

December 2025

Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.

Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.

View Article and Find Full Text PDF

Author Correction: π-HuB: the proteomic navigator of the human body.

Nature

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

View Article and Find Full Text PDF

Study Objectives: To examine 1) multidimensional sleep profiles in pre-schoolers (3-6 years) across geocultural regions and 2) differences in sleep characteristics and family practices between Majority World regions (Pacific Islands, Sub-Saharan Africa, Eastern Europe, Northeast Asia, Southeast Asia, South Asia, the Middle East and North Africa, Latin America) and the Minority World (the Western world).

Methods: Participants were 3507 pre-schoolers from 37 countries. Nighttime sleep characteristics and nap duration (accelerometer: n=1950) and family practices (parental questionnaire) were measured.

View Article and Find Full Text PDF

Tuning the Crowding Effect of Water and Imidazole in Covalent Organic Frameworks for Proton Conduction.

ACS Appl Mater Interfaces

January 2025

School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

The proton conduction of imidazole under confined conditions has attracted widespread attention from researchers. Under anhydrous conditions, the proton transfer behavior is primarily governed by the molecular dynamics of imidazole. However, within a water-mediated system, the crowding effect of water and imidazole in a confined space may outweigh the intrinsic properties of imidazole itself.

View Article and Find Full Text PDF

Molecular Micellar Aggregate Electrolytes Enable Durable Electrochemical Proton Storage.

Angew Chem Int Ed Engl

December 2024

Jiangsu Key Laboratory of Materials and Technologies for Energy Storage Technology, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, People's Republic of China.

Article Synopsis
  • Proton electrochemistry can create high-capacity energy storage devices beyond lithium, but water decomposition in acidic electrolytes causes issues like electrode corrosion and capacity loss.
  • Researchers developed a new non-aqueous electrolyte using micellar aggregates formed by cetyltrimethylammonium bromide (CTAB) in acetonitrile and phosphoric acid, which enhances proton transport and improves stability.
  • An optimized CTAB electrolyte led to a proton battery with significant energy density (102.8 Wh kg-1) and power density (10.1 kW kg-1), demonstrating promise for applications like grid storage and portable electronics.
View Article and Find Full Text PDF

Context: Trees play a vital role in reducing street-level particulate matter (PM) pollution in metropolitan areas. However, the optimal tree growth type for maximizing the retention of various sizes of PM remains uncertain.

Objectives: This study assessed the PM reduction capabilities of evergreen and deciduous broadleaf street trees, focusing on how leaf phenology influences the dispersion of pollutants across particle sizes.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNA molecules in eukaryotes, involved in many essential biological processes. However, their role in allergic rhinitis (AR) has not been extensively studied.

Methods: The expression levels of hsa_circRNA_100791 were measured using qRT-PCR in peripheral blood mononuclear cells (PBMCs) and nasal mucosa from AR patients.

View Article and Find Full Text PDF

Metals are an emerging topic in cancer immunotherapy that have shown great potential in modulating cancer immunity cycle and promoting antitumor immunity by activating the intrinsic immunostimulatory mechanisms which have been identified in recent years. The main challenge of metal-assisted immunotherapy lies in the fact that the free metals as ion forms are easily cleared during circulation, and even cause systemic metal toxicity due to the off-target effects. With the rapid development of nanomedicine, metal-based smart nanosystems (MSNs) with unique controllable structure become one of the most promising delivery carriers to solve the issue, owing to their various endogenous/external stimuli-responsiveness to release free metal ions for metalloimmunotherapy.

View Article and Find Full Text PDF

Exploring cost reduction strategies for serum free media development.

NPJ Sci Food

December 2024

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore.

Cultivated meat production offers solutions in addressing global food security and sustainability challenges. However, serum-free media (SFM) used in cultivating the cells are expensive, contributing to at least 50% of variable operating costs. This review explores technologies for cost-effective SFM, focusing on reducing cost from using growth factors and recombinant proteins, using affordable raw materials for basal media, and implementing cost-saving measures like media recycling and reducing waste build-up.

View Article and Find Full Text PDF