268,543 results match your criteria: "Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center[Affiliation]"

Soybean, the fourth most important crop in the world, uniquely serves as a source of both plant oil and plant protein for the world's food and animal feed. Although soybean production has increased approximately 13-fold over the past 60 years, the continually growing global population necessitates further increases in soybean production. In the past, especially in the last decade, significant progress has been made in both functional genomics and molecular breeding.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.

View Article and Find Full Text PDF

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Increasing antibiotic resistance poses an urgent global public health threat and a serious concern worldwide. Bacteriophage (phage) therapy has been identified as a promising alternative to antibiotics for treating bacterial diseases in both humans and animals. The excessive use of antibiotics in aquaculture is a major threat to sustainable aquaculture, promoting the spread of antibiotic resistance in the aquaculture environment and the contamination of aquaculture products with antibiotic residues.

View Article and Find Full Text PDF

Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).

View Article and Find Full Text PDF

The Impact of Genetic Variation on Duck Hepatitis A Virus (DHAV) Vaccine Efficacy: A Comparative Study of DHAV-1 and DHAV-3 Against Emerging Variant Strains.

Vaccines (Basel)

December 2024

Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.

Duck virus hepatitis (DVH), caused by duck hepatitis A virus (DHAV), poses significant challenges to duck farming due to high mortality rates in young ducklings. Despite the widespread use of live attenuated vaccines, the genetic diversity within DHAV strains has diminished their cross-protection efficacy. This study aimed to evaluate the cross-protective efficacy of current DHAV-1 and DHAV-3 vaccines against genetically divergent wild strains.

View Article and Find Full Text PDF

Cell-Cultured Influenza Vaccine Enhances IFN-γ+ T Cell and Memory T Cell Responses Following A/Victoria/2570/2019 IVR-215 (A/H1N1) Infection.

Vaccines (Basel)

December 2024

The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

Background: Influenza remains a significant public health challenge, with vaccination being a substantial way to prevent it. Cell-cultured influenza vaccines have emerged to improve on the drawbacks of egg-based vaccines, but there are few studies focusing on T cell immunity with both types of vaccines. Therefore, we studied the following 2022-2023 seasonal influenza vaccines with a standard dose and high dose: cell-based (C_sd and C_hd) and egg-based (E_sd and E_hd) vaccines.

View Article and Find Full Text PDF

Background: Varicella can lead to severe complications in immunocompromised children, including those undergoing hematopoietic stem cell transplantation (HSCT) or chemotherapy. Preventing primary varicella zoster virus (VZV) infection is crucial in these populations to mitigate morbidity and mortality. This study aimed to evaluate the immunogenicity and safety of the live attenuated MAV/06 varicella vaccine in pediatric patients post-HSCT and post-chemotherapy.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (T) cells and tissue-resident memory B (B) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses.

View Article and Find Full Text PDF

: Cellular and humoral immunity are key to the immune response against SARS-CoV-2, but the comparability and correlation across different assays remain underexplored. This study compares three T-cell and three antibody assays in two vaccine groups. : This prospective longitudinal cohort study involved 46 naïve healthcare workers: a total of 11 in the homologous mRNA-1273 group (three doses) and 35 in the heterologous ChAd group (two ChAd doses followed by a BNT booster).

View Article and Find Full Text PDF

Disturbance Robust Attitude Stabilization of Multirotors with Control Moment Gyros.

Sensors (Basel)

December 2024

Department of Aerospace Engineering, Chosun University, Gwangju 61452, Republic of Korea.

This paper presents a novel control framework for enhancing the attitude stabilization of multirotor UAVs using Control Moment Gyros (CMGs) and a Disturbance Robust Drive Law (DRDL). Due to their lightweight and compact structure, multirotor UAVs are highly susceptible to disturbances such as wind, making it challenging to achieve stable attitude control using rotor thrust alone. To address this issue, we employ CMGs to provide robust attitude control and apply Fast Terminal Sliding Mode Control (FTSMC) to ensure fast and accurate convergence within a finite time.

View Article and Find Full Text PDF

Initial Pose Estimation Method for Robust LiDAR-Inertial Calibration and Mapping.

Sensors (Basel)

December 2024

Department of Intelligent Systems & Robotics, Chungbuk National University, Cheongju 28644, Republic of Korea.

Handheld LiDAR scanners, which typically consist of a LiDAR sensor, Inertial Measurement Unit, and processor, enable data capture while moving, offering flexibility for various applications, including indoor and outdoor 3D mapping in fields such as architecture and civil engineering. Unlike fixed LiDAR systems, handheld devices allow data collection from different angles, but this mobility introduces challenges in data quality, particularly when initial calibration between sensors is not precise. Accurate LiDAR-IMU calibration, essential for mapping accuracy in Simultaneous Localization and Mapping applications, involves precise alignment of the sensors' extrinsic parameters.

View Article and Find Full Text PDF

We analyze the communication link of an LEO satellite considering interference sources moving along various parabola-curved paths. In this situation, the location of the ground station, airborne interference source paths, and the satellite's trajectory were expressed in the East-North-Up (ENU) coordinate system. The airborne interference source path is designed using a parabola equation with a directrix parallel to the satellite's trajectory to analyze the interference situation for more diverse interference source paths, rather than using a straight path.

View Article and Find Full Text PDF

Enhancing Time Series Anomaly Detection: A Knowledge Distillation Approach with Image Transformation.

Sensors (Basel)

December 2024

Division of Computer Science & Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea.

Anomaly detection is critical in safety-sensitive fields, but faces challenges from scarce abnormal data and costly expert labeling. Time series anomaly detection is relatively challenging due to its reliance on sequential data, which imposes high computational and memory costs. In particular, it is often composed of real-time collected data that tends to be noisy, making preprocessing an essential step.

View Article and Find Full Text PDF

A WSN and LoRa Hybrid Multimedia Transmission Protocol for Scalar Data and Image Transmission.

Sensors (Basel)

December 2024

Ubicom Laboratory, Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

The proposed protocol features reliable and fast image transmission while periodically transmitting scalar data without interruption by allowing two networks, a LoRa network and a wireless sensor network, with different transmission characteristics to cooperate. It adopts the RT-LoRa protocol for periodic scalar data transmission and uses a WSN-based pipelined transmission method that leverages single-hop message transmission of a LoRa network for image transmission. Thus, it can not only eliminate the control message overhead for time synchronization, slot scheduling, and path establishment for pipelined image transmission in WSNs but also eliminate interferences within WSNs, such as data collisions and data and message collisions, during pipelined image transmission, thereby enabling high reliability and fast transmission.

View Article and Find Full Text PDF

Point Cloud Wall Projection for Realistic Road Data Augmentation.

Sensors (Basel)

December 2024

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea.

Several approaches have been developed to generate synthetic object points using real LiDAR point cloud data for advanced driver-assistance system (ADAS) applications. The synthetic object points generated from a scene (both the near and distant objects) are essential for several ADAS tasks. However, generating points from distant objects using sparse LiDAR data with precision is still a challenging task.

View Article and Find Full Text PDF

Sybil Attack-Resistant Blockchain-Based Proof-of-Location Mechanism with Privacy Protection in VANET.

Sensors (Basel)

December 2024

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

In this paper, we propose a Proof-of-Location (PoL)-based location verification scheme for mitigating Sybil attacks in vehicular ad hoc networks (VANETs). For this purpose, we employ smart contracts for storing the location information of the vehicles. This smart contract is maintained by Road Side Units (RSUs) and acts as a ground truth for verifying the position information of the neighboring vehicles.

View Article and Find Full Text PDF

In this study, we describe a low-noise complementary metal-oxide semiconductor (CMOS) image sensor (CIS) with a 10/11-bit hybrid single-slope analog-to-digital converter (SS-ADC). The proposed hybrid SS-ADC provides a resolution of 11 bits in low-light and 10 bits in high-light. To this end, in the low-light section, the digital-correlated double sampling method using a double data rate structure was used to obtain a noise performance similar to that of the 11-bit SS-ADC under low-light conditions, while maintaining linear in-out characteristics.

View Article and Find Full Text PDF

Confidence-Guided Frame Skipping to Enhance Object Tracking Speed.

Sensors (Basel)

December 2024

School of Software, Kwangwoon University, Kwangwoon-ro 20, Nowon-gu, Seoul 01897, Republic of Korea.

Object tracking is a challenging task in computer vision. While simple tracking methods offer fast speeds, they often fail to track targets. To address this issue, traditional methods typically rely on complex algorithms.

View Article and Find Full Text PDF

In this paper, a sub-1dB Low Noise Amplifier (LNA) with several gain modes, including amplification and attenuation modes required for the fifth and fourth generations (5G/4G) of mobile network applications, is proposed. Its current consumption is adaptive for every gain mode and varies to lower currents for lower amplifications due to the importance of current consumption for mobile network applications. The proposed LNA features an innovative architecture with a three-core input structure supporting multi-gain modes, achieving high gain and ultra-low noise performance.

View Article and Find Full Text PDF

Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review.

Sensors (Basel)

December 2024

Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Jeollanam-do, Republic of Korea.

Nuclear medicine imaging (NMI) is essential for the diagnosis and sensing of various diseases; however, challenges persist regarding image quality and accessibility during NMI-based treatment. This paper reviews the use of deep learning methods for generating synthetic nuclear medicine images, aimed at improving the interpretability and utility of nuclear medicine protocols. We discuss advanced image generation algorithms designed to recover details from low-dose scans, uncover information hidden by specific radiopharmaceutical properties, and enhance the sensing of physiological processes.

View Article and Find Full Text PDF

Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals.

View Article and Find Full Text PDF

In composite structures, the precise identification and localization of damage is necessary to preserve structural integrity in applications across such fields as aeronautical, civil, and mechanical engineering. This study presents a deep learning (DL)-assisted framework for simultaneous damage localization and severity assessment in composite structures using Lamb waves (LWs). Previous studies have often focused on either damage detection or localization in composite structures.

View Article and Find Full Text PDF