9,466 results match your criteria: "Reperfusion Injury in Stroke"

Elevated inflammatory reactions are a significant component in cerebral ischemia-reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen-glucose deprivation/reoxygenation (OGDR) condition.

View Article and Find Full Text PDF

SENP6-Mediated deSUMOylation of Nrf2 Exacerbates Neuronal Oxidative Stress Following Cerebral Ischemia and Reperfusion Injury.

Adv Sci (Weinh)

December 2024

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Oxidative stress is believed to play critical pathophysiological roles in ischemic brain injury, and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is recognized as the most crucial endogenous antioxidant stress damage route. Some research have demonstrated that Nrf2 play critical roles in oxidative stress after ischemic stroke, but the underlying mechanism are not fully elucidated. This study reveals that Nrf2 is modified by SUMOylation and identifies Sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of Nrf2 SUMOylation.

View Article and Find Full Text PDF

Background: Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.

View Article and Find Full Text PDF

Hydrogen sulfide-mediated inhibition of ROCK exerts a vasoprotective effecton ischemic brain injury.

Am J Physiol Cell Physiol

December 2024

Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.

As a gas molecule, hydrogen sulfide (HS) exerts neuroprotective effects. Despite its recognized importance, there remains a need for a deeper understanding of HS's impact on vascular smooth muscle cells and its role in ischemic brain injury. This study employs encompassing cultured primary cerebral vascular smooth muscle cells, oxygen-glucose deprivation/reoxygenation model, in vitro vascular tone assessments, in vivo middle cerebral artery occlusion and reperfusion experimentation in male rats, and the utilization of ROCK knockout, to unravel the intricate relationship between H2S and cerebrovascular diastolic function.

View Article and Find Full Text PDF

Oxidative stress-induced DNA damage is an important mechanism that leads to the death of neuronal cells after ischemic stroke. Our previous study found that Ku70 was highly expressed in ischemic brain tissue of rats after cerebral ischemia-reperfusion injury. However, the role of Ku70 in glucose-oxygen deprivation/reperfusion (OGD/R) in astrocytes has not been reported.

View Article and Find Full Text PDF

Objective: To use pharmacodynamics, molecular biology studies, network pharmacology, and molecular docking to study the mechanism of action of the Ligusticum wallichii (known as Chuanxiong in China, CX) and borneol (known as Bingpian in China, BP) medication pair (CXBP) for the treatment of ischemic stroke.

Methods: The TCMSP, ETCM, and SymMap databases provided the effective chemical components and targets of CXBP, while the databases OMIM, GeneCards, TTD, Pubmed, Web of Science, CNKI, Wanfang Data, and VIP Database provided targets relevant to ischemic stroke. In addition we conducted animal experiments for validation.

View Article and Find Full Text PDF

Ferroptosis and its impact on common diseases.

PeerJ

December 2024

Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

Ferroptosis is a novel form of programmed cell death characterized by iron accumulation, lipid peroxidation, and a decline in antioxidant capacity, all of which are regulated by gene expression. The onset of numerous diseases is closely associated with ferroptosis. Common diseases affect a large population, reduce the quality of life, and impose an increased burden on the healthcare system.

View Article and Find Full Text PDF

Adequate post-ischemic reperfusion of the mouse brain requires endothelial NFAT5.

Acta Neuropathol Commun

December 2024

Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.

Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized.

View Article and Find Full Text PDF

KLF6 silencing attenuates MCAO-induced brain injury and cognitive dysfunction via targeting ferroptosis and activating the Nrf2/HO-1 pathway.

Hum Exp Toxicol

December 2024

Department of neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China. Hubei Sizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China.

Introduction: The incidence of cerebral ischemia-reperfusion injury (I/R) is complex which seriously threatens the life safety of patients. Neither its prevention nor its treatment has been successful so far. Proteins that bind to DNA and belong to the C2/H2 zinc finger family are known as Krüppel-like factors (KLFs).

View Article and Find Full Text PDF

Sodium ferulate attenuates ischaemic stroke by mediating the upregulation of thrombospondin-4 expression and combined treatment with bone marrow mesenchymal stem cells.

Exp Neurol

December 2024

Department of Encephalopathy, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, Guangdong 518000, China. Electronic address:

Ischaemic stroke is one of the major diseases affecting human health, involving complex and diverse pathological mechanisms, including inflammatory response, oxidative stress and angiogenesis. Sodium ferulate (SF) exerts a protective effect on cerebral ischaemia/reperfusion and when combined with bone marrow mesenchymal stem cells (BMSCs), has a considerable therapeutic effect on brain injury in rats. Here, we speculate that SF also exerts cerebroprotective effects.

View Article and Find Full Text PDF

Oxygen-glucose-deprived peripheral blood mononuclear cells act on hypoxic lesions after ischemia-reperfusion injury.

Exp Neurol

December 2024

Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan. Electronic address:

Background: Despite advances in reperfusion therapies, ischemic stroke remains a major cause of long-term disability due to residual hypoxic lesions persisting after macrovascular reperfusion. These residual hypoxic lesions, caused by microvascular dysfunction, represent an important therapeutic target. We previously demonstrated that oxygen-glucose-deprived peripheral blood mononuclear cells (OGD-PBMCs) migrate to ischemic brain regions and promote functional recovery after stroke.

View Article and Find Full Text PDF

Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α.

J Ethnopharmacol

December 2024

Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. Electronic address:

Ethnopharmacological Relevance: Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier.

View Article and Find Full Text PDF

Halcinonide activates smoothened to ameliorate ischemic stroke injury.

Life Sci

January 2025

School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Lanzhou 730000, PR China. Electronic address:

Objectives: The Shh pathway may shed new light on developing new cell death inhibitors for the therapy of ischemic stroke. We aimed to examine whether the Shh co-reporter SMO or its agonist halcinonide can upregulate Bcl-2 to suppress neuronal cell death, ultimately improving behavioral deficits and reducing cerebral infarction in an ischemic stroke model.

Methods: Halcinonide or genetic manipulation of SMO was conducted in PC12 cells to examine their impacts on oxidative or OGD/R stress, and the chemical, along with AAV-SMO or AAV-EGFP were tested in MCAO rats to investigate their potential protective effects against neuronal damages due to cerebral I/R injury.

View Article and Find Full Text PDF

Ischemic strokes pose serious risks to human health. We aimed to elucidate the function of NOD-like receptor X1 (NLRX1) in a rat middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injury (CIRI) model and in an oxygen-glucose deprivation/reperfusion (OGD/R)-treated human microglial cell line (HMC3) model. Following NLRX1 upregulation, infarct volumes were measured with 2,3,5-triphenyltetrazolium chloride staining and pathological examination was conducted with hematoxylin-eosin staining.

View Article and Find Full Text PDF

Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance.

View Article and Find Full Text PDF

Flavonoids from as neuroprotective agents attenuate cerebral ischemia/reperfusion injury and via activating Nrf2.

Redox Rep

December 2025

School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China.

Objectives: Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes.

View Article and Find Full Text PDF

Remote ischaemic conditioning for neurological disorders-a systematic review and narrative synthesis.

Syst Rev

December 2024

Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.

Introduction: Remote ischaemic conditioning (RIC) refers to the use of controlled transient ischemic and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic injury. Preclinical studies demonstrate that RIC may have a neuroprotective effect and therefore could represent a novel therapeutic option in the management of neurological disorders. The aim of this review is to comprehensively describe the current clinical evidence of RIC in neurological disorders.

View Article and Find Full Text PDF

Objective: Cerebral ischemia-reperfusion injury (CIRI) is a major obstacle to neurological recovery after clinical treatment of ischemic stroke. The aim of this study was to investigate the molecular mechanism of Nek6 alleviating CIRI through autophagy after cerebral ischemia.

Materials And Methods: A mouse model of CIRI was constructed by middle cerebral artery occlusion (MCAO).

View Article and Find Full Text PDF

Astragalus membranaceus-Carthamus tinctorius herb pair antagonizes parthanatos in cerebral ischemia/reperfusion injury via regulating PARP-1/TAX1BP1-mediated mitochondrial respiratory chain complex I.

J Ethnopharmacol

December 2024

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China. Electronic address:

Ethnopharmacological Relevance: The combination of Astragalus membranaceus (Huang Qi in Chinese, HQ) and Carthamus tinctorius (Hong Hua in Chinese, HH) is commonly employed for treating ischemic stroke (IS). The heavily oxidative environment of cerebral ischemia/reperfusion injury (CI/RI) promotes activation of poly (ADP-ribose) polymerase-1 (PARP-1), which initiates parthanatos, a regulated cell death mode. Reactive oxygen species (ROS) bursting in mitochondrial respiratory chain complex I (Complex I) is a key cause of CI/RI.

View Article and Find Full Text PDF

Electroacupuncture inhibits neuronal pyroptosis in ischemic brain injury through modulating SIRT5-mediated NEK7 succinylation.

Brain Res Bull

December 2024

Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No 150, Ximen Street, Linhai, Taizhou, Zhejiang 317000, China; Luqiao Hospital, Taizhou Enze Medical Center (Group), No 1, West Xialiqiao Road, Luqiao District, Taizhou, Zhejiang 318050, China. Electronic address:

Ischemic stroke is a leading cause of global death. The treatment of this disease can inevitably result in reperfusion, thereby triggering cerebral ischemia-reperfusion injury (IRI) and neuronal pyroptosis. Electroacupuncture derived from traditional acupuncture has been proven to have favorable effects on ameliorating brain IRI and pyroptosis.

View Article and Find Full Text PDF

Long non-coding RNA OIP5-AS1 protects neurons from ischemia-reperfusion injury and inhibits neuronal apoptosis through TAB-2.

Biochem Biophys Res Commun

January 2025

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China. Electronic address:

Ischemic stroke represents a highly perilous cerebrovascular disorder, involving a variety of complex pathophysiological mechanisms. OIP5 antisense RNA 1 (OIP5-AS1) is a long non-coding RNA (LncRNA) that has been shown to play a pivotal role in a variety of disease systems. However, there are relatively few studies on ischemic stroke.

View Article and Find Full Text PDF

Energy restriction inhibits β-catenin ubiquitination to improve ischemic stroke injury via USP18/SKP2 axis.

Metab Brain Dis

December 2024

Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.

Ischemic stroke (IS) remains a global health issue because of its great disability and mortality. Energy restriction (ER) has been justified to perform an inhibitory role in cerebral injury caused by IS. This research was purposed to inquire the potential molecular mechanism of ER in IS.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how thrombolytic therapy and endovascular thrombectomy affect certain blood markers related to brain damage in patients who had an acute ischemic stroke.
  • Results showed significant changes in S100B and thiol levels in the thrombolytic therapy group, indicating a potential reduction in brain injury, whereas the levels of disulfide and ischemia-modified albumin didn't significantly change.
  • The findings emphasize the need for further research to explore treatments that mitigate free radical damage during stroke recovery.
View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common and clinically significant form of tissue damage encountered in medical practice. This pathological process has been thoroughly investigated across a variety of clinical settings, including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Intestinal IRI, in particular, is increasingly recognized as a significant clinical entity due to marked changes in the gut microbiota and their metabolic products, often described as the body's "second genome.

View Article and Find Full Text PDF

An ischemic cerebral stroke results from the interruption of blood flow to the brain, triggering rapid and complex cascades of excitotoxicity, oxidative stress, and inflammation. Current reperfusion therapies, including intravenous thrombolysis and mechanical thrombectomy, cause further brain injury due to reperfusion-induced cytotoxicity. To date, novel cytoprotective therapies that could address these challenges have yet to be developed, likely due to the limitations of targeting a single pathologic mechanism.

View Article and Find Full Text PDF