1,140 results match your criteria: "Regenerative Medicine Center[Affiliation]"

Biomolecular condensates in immune cell fate.

Nat Rev Immunol

January 2025

Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.

Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins.

View Article and Find Full Text PDF

Current challenges in tissue engineering include creation of extracellular environments that support and interact with cells using biochemical, mechanical, and structural cues. Spatial control over these cues is currently limited due to a lack of suitable fabrication techniques. This study introduces Xolography, an emerging dual-color light-sheet volumetric printing technology, to achieve control over structural and mechanical features for hydrogel-based photoresins at micro- to macroscale while printing within minutes.

View Article and Find Full Text PDF

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is still a growing concern in the field of antimicrobial resistance due to its resistance to conventional antibiotics and its association with high mortality rates. Mesenchymal stromal cells (MSCs) have been shown as a promising and attractive alternative treatment for bacterial infections, due to their antibacterial properties and potential to bypass traditional resistance mechanisms. This study aims to shed light on the antibacterial potential of adipose-derived mesenchymal stromal cell (AD-MSC) secretome against clinical isolates of Staphylococcus spp.

View Article and Find Full Text PDF

Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.

View Article and Find Full Text PDF

Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.

View Article and Find Full Text PDF

The spatial organization of cells within a tissue is dictated throughout dynamic developmental processes. We sought to understand whether cells geometrically coordinate with one another throughout development to achieve their organization. The pancreas is a complex cellular organ with a particular spatial organization.

View Article and Find Full Text PDF

Space exploration and risk of Parkinson's disease: a perspective review.

NPJ Microgravity

January 2025

Department of Biological Science, Boise State University, Boise, ID, 83725, USA.

Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.

View Article and Find Full Text PDF

The role of the immune system in regulating tissue stem cells remains poorly understood, as does the relationship between immune-mediated tissue damage and regeneration. Graft vs. host disease (GVHD) occurring after allogeneic bone marrow transplantation (allo-BMT) involves immune-mediated damage to the intestinal epithelium and its stem cell compartment.

View Article and Find Full Text PDF

Introduction: Inflammatory bowel disease (IBD), including ulcerative colitis, is marked by intestinal barrier disruptions, immune system dysregulation, and an imbalance in the gut microbiota. The golden chanterelle mushroom, Fr., a popular edible mushroom, has shown potential therapeutic benefits.

View Article and Find Full Text PDF

IPNA clinical practice recommendations on care of pediatric patients with pre-existing kidney disease during seasonal outbreak of COVID-19.

Pediatr Nephrol

December 2024

Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.

The coronavirus disease 2019 (COVID-19) pandemic, instigated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has profoundly impacted healthcare infrastructures around the globe. While children are usually asymptomatic or have mild symptoms, children with pre-existing kidney conditions require specialized attention. This pivotal report, championed by the International Pediatric Nephrology Association (IPNA), delivers precise and actionable recommendations tailored for pediatric patients with kidney ailments in this pandemic landscape.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. Sea conch peptide hydrolysate (CPH) was produced by enzymatic digestion of fresh conch meat with trypsin enzyme. To analyze the molecular composition, functional groups, and structural morphology of the hydrolysate, we employed liquid chromatography-mass spectrometry (LC-MS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems.

View Article and Find Full Text PDF

Intercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, EV functionality likely differs between subpopulations with varying surface compositions.

View Article and Find Full Text PDF

The ovine cervical spine model has been established as a representative model of the human cervical spine in the current literature, and is the most commonly used large animal model in studies investigating pathogenesis and treatment strategies for intervertebral disc (IVD) degeneration. However, existing data regarding morphometry, biomechanical profiles and the microscopic features of a physiological ovine cervical IVD remain scarce. Hence, the aim of this study was to perform a multimodal morphometric, biomechanical and histologic evaluation of a normal ovine cervical IVD.

View Article and Find Full Text PDF

TTC7A missense variants in intestinal disease can be classified by molecular and cellular phenotypes.

Hum Mol Genet

December 2024

Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands.

Biallelic mutations in tetratricopeptide repeat domain 7A (TTC7A) give rise to intestinal and immune disorders. However, our understanding of the genotype-phenotype relationship is limited, because TTC7A variants are mostly compound heterozygous and the disease phenotypes are highly diverse. This study aims to clarify how different TTC7A variants impact the severity of intestinal epithelial disorders.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) exist in multiple, transcriptionally distinct states and serve as powerful models for studying human development. Despite their significance, the molecular determinants and pathways governing these pluripotent states remain incompletely understood. Here, we demonstrate that transposable elements act as sensitive indicators of distinct pluripotent cell states.

View Article and Find Full Text PDF
Article Synopsis
  • Chemoresistance is a major issue in cancer treatment, prompting the exploration of RNA interference (RNAi) as a potential gene therapy approach to enhance chemotherapy effectiveness.
  • Small-interfering RNA (siRNA) faces challenges in entering cancer cells due to biological barriers, but nanoparticles provide a solution by shielding siRNA and aiding its delivery.
  • The review highlights advancements in nanoparticle technology for siRNA delivery in cancer treatment, discusses existing obstacles, and considers future opportunities to combat chemoresistance in cancer therapy.
View Article and Find Full Text PDF

Neuron-glial cell interactions following traumatic brain injury (TBI) determine the propagation of damage and long-term neurodegeneration. Spatiotemporally heterogeneous cytosolic and mitochondrial metabolic pathways are involved, leading to challenges in developing effective diagnostics and treatments. An engineered three-dimensional brain tissue model comprising human neurons, astrocytes, and microglia is used in combination with label-free, two-photon imaging and microRNA studies to characterize metabolic interactions between glial and neuronal cells over 72 hours following impact injury.

View Article and Find Full Text PDF

We herein report a rare case of acute myeloid leukemia (AML) with t(11;12)(p15;q13) and NUP98::RARG, which seems to be involved in the development of AML. The morphological features were similar to those of classic acute promyelocytic leukemia (APL), but unlike classic APL, this leukemia was resistant to treatment with all-trans retinoic acid (ATRA). We decided to use standard chemotherapy for AML with monitoring of minimal residual disease (MRD) by qualitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for NUP98::RARG mRNA.

View Article and Find Full Text PDF

Children born with defective heart valves require multiple donor valve replacements throughout life, because these cannot grow and can cause early failure through immune degeneration. This study tests the lentiviral delivery of viral immune evasion genes US2 and human serpin 9 to shield human heart valves from immune rejection. The results show we can efficiently down-regulate human leukocyte antigen expression in heart valve cells and in intact heart valve tissue resulting in decreased activity of a human leukocyte antigen-reactive CD8+ T-cell clone without inducing cytotoxicity.

View Article and Find Full Text PDF

Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential.

Cell Immunol

January 2025

Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands. Electronic address:

Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in permanent neurological dysfunction and neuropathic pain. To address this pathology, we recently conducted a clinical study in which we transplanted neural precursor cells (NPCs) derived from human induced pluripotent stem cells into patients during the subacute phase of SCI. One of the therapeutic mechanisms of cell transplantation is the formation of synaptic connections with the host's neural tissues, which we demonstrated using a chemogenetic tool.

View Article and Find Full Text PDF