68 results match your criteria: "Red Sea Research Centre[Affiliation]"
J Anim Ecol
January 2020
Department of Biosciences, Swansea University, Swansea, UK.
It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood.
View Article and Find Full Text PDFNat Ecol Evol
May 2019
Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Exotic species are a growing global ecological threat; however, their overall effects are insufficiently understood. While some exotic species are implicated in many species extinctions, others can provide benefits to the recipient communities. Here, we performed a meta-analysis to quantify and synthesize the ecological effects of 76 exotic marine species (about 6% of the listed exotics) on ten variables in marine communities.
View Article and Find Full Text PDFSci Total Environ
June 2019
King Abdullah University of Science and Technology, Red Sea Research Centre, Thuwal 23955-6900, Saudi Arabia.
Massive consumption of petroleum since the past century has led to considerable emissions into marine ecosystems. Marine sediments may accumulate substantial quantities of petroleum and associated contaminants in oil-producing areas. Here, we report accelerated accumulation of total petroleum hydrocarbons (TPH) in 'blue carbon' vegetated ecosystems of the Arabian Gulf - the world's most important region for oil production.
View Article and Find Full Text PDFSci Rep
January 2019
Department of Earth Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The timing of phytoplankton growth (phenology) in tropical oceans is a crucial factor influencing the survival rates of higher trophic levels, food web structure and the functioning of coral reef ecosystems. Phytoplankton phenology is thus categorised as an 'ecosystem indicator', which can be utilised to assess ecosystem health in response to environmental and climatic perturbations. Ocean-colour remote sensing is currently the only technique providing global, long-term, synoptic estimates of phenology.
View Article and Find Full Text PDFFEMS Microbiol Ecol
November 2018
Cawthron Institute, Nelson, New Zealand.
Taxonomic and functional community structures may respond differently to anthropogenic stressors. Used in combination they can provide an estimate of functional redundancy, a key component of ecosystem resilience. In this study, the utility of incorporating functional community structure and co-occurrence network properties into impact assessments of offshore oil and gas (O&G) operations on benthic bacterial communities was investigated.
View Article and Find Full Text PDFSci Rep
June 2018
Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia.
Coral reefs are at risk of exposure to petroleum hydrocarbons from shipping spills and uncontrolled discharges during extraction. The toxicity of petroleum hydrocarbons can substantially increase in the presence of ultraviolet radiation (UVR), therefore spills in shallow coral reef environments may be particularly hazardous to reef species. Here we investigated the sensitivity of coral larvae (Acropora tenuis) to dissolved hydrocarbons from heavy fuel oil (HFO) and diesel in the absence and presence of UVR.
View Article and Find Full Text PDFIntegr Zool
January 2019
School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
Two prime issues can detrimentally affect animals that have been equipped with tags: (i) the effect of the capture and restraint process; and (ii) the effect of the tag itself. This work examines some of the issues surrounding quantification of tag effects on wild animals for both restrained and free-living animals. A new method to quantify stress effects based on monitoring ventilation rates in relation to activity is suggested for restrained animals which may help improve the practice of handling animals.
View Article and Find Full Text PDFMar Pollut Bull
February 2018
Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand.
Standardized ecosystem-based monitoring surveys are critical for providing information on marine ecosystem health. Environmental DNA/RNA (eDNA/eRNA) metabarcoding may facilitate such surveys by quickly and effectively characterizing multi-trophic levels. In this study, we assessed the suitability of eDNA/eRNA metabarcoding to evaluate changes in benthic assemblages of bacteria, Foraminifera and other eukaryotes along transects at three offshore oil and gas (O&G) drilling and production sites, and compared these to morphologically characterized macro-faunal assemblages.
View Article and Find Full Text PDFPLoS One
August 2017
Institute for Resources, Environment, and Sustainability, The University of British Columbia, Vancouver, Canada.
The elicitation of expert judgment is an important tool for assessment of risks and impacts in environmental management contexts, and especially important as decision-makers face novel challenges where prior empirical research is lacking or insufficient. Evidence-driven elicitation approaches typically involve techniques to derive more accurate probability distributions under fairly specific contexts. Experts are, however, prone to overconfidence in their judgements.
View Article and Find Full Text PDFJ Environ Manage
September 2017
Institute for Resources, Environment, and Sustainability, The University of British Columbia, Vancouver, Canada. Electronic address:
Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these.
View Article and Find Full Text PDFPeerJ
May 2017
Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.
Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes.
View Article and Find Full Text PDFSci Rep
November 2016
Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany.
There has been increasing interest in diatom-based bio-assessment but we still lack a comprehensive understanding of how to capture diatoms' temporal dynamics with an appropriate sampling frequency (ASF). To cover this research gap, we collected and analyzed daily riverine diatom samples over a 1-year period (25 April 2013-30 April 2014) at the outlet of a German lowland river. The samples were classified into five clusters (1-5) by a Kohonen Self-Organizing Map (SOM) method based on similarity between species compositions over time.
View Article and Find Full Text PDFMar Environ Res
September 2016
Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand.
At present, environmental impacts from offshore oil and gas activities are partly determined by measuring changes in macrofauna diversity. Morphological identification of macrofauna is time-consuming, expensive and dependent on taxonomic expertise. In this study, we evaluated the applicability of using foraminiferal-specific metabarcoding for routine monitoring.
View Article and Find Full Text PDFJ Fish Biol
September 2016
Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.
The presence of whale sharks Rhincodon typus were recorded around Shib Habil, a small, coastal reef off the Red Sea coast of Saudi Arabia, from 2010 to 2015. A total of 267 suitable photographs resulting in the identification of 136 individuals, were documented from 305 encounters. Sharks were divided evenly between the sexes with no evidence of temporal or spatial segregation.
View Article and Find Full Text PDFISME J
June 2016
Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine-seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.
View Article and Find Full Text PDFBiotechnol Adv
December 2015
Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. Electronic address:
Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used.
View Article and Find Full Text PDFISME J
February 2015
Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle.
View Article and Find Full Text PDFPLoS One
May 2015
The School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Australia.
The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae).
View Article and Find Full Text PDF