15 results match your criteria: "Radboud University Nijmegen Medical Centre and Nijmegen Centre for Molecular Life Sciences[Affiliation]"

Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes.

Curr Opin Hematol

May 2014

aDepartment of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy bDepartment of Biochemistry, Radboud University Nijmegen Medical Centre and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands cRed Cell Physiology Laboratory, New York Blood Center, New York, New York, USA.

Purpose Of Review: This review discusses the mechanisms involved in the generation of thorny red blood cells (RBCs), known as acanthocytes, in patients with neuroacanthocytosis, a heterogenous group of neurodegenerative hereditary disorders that include chorea-acanthocytosis (ChAc) and McLeod syndrome (MLS).

Recent Findings: Although molecular defects associated with neuroacanthocytosis have been identified recently, their pathophysiology and the related RBC abnormalities are largely unknown. Studies in ChAc RBCs have shown an altered association between the cytoskeleton and the integral membrane protein compartment in the absence of major changes in RBC membrane composition.

View Article and Find Full Text PDF

Human plasmacytoid dendritic cells (pDCs) represent a highly specialized naturally occurring dendritic-cell subset and are the main producers of type I interferons (IFNs) in response to viral infections. We show that human pDCs activated by the preventive vaccine FSME specifically up-regulate CD56 on their surface, a marker that was thought to be specific for NK cells and associated with cytolytic effector functions. We observed that FSME-activated pDCs specifically lysed NK target cells and expressed cytotoxic molecules, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and granzyme B.

View Article and Find Full Text PDF

Uterine leiomyomas are benign solid tumors of mesenchymal origin which occur with an estimated incidence of up to 77% of all women of reproductive age. The majority of these tumors remains symptomless, but in about a quarter of cases they cause leiomyoma-associated symptoms including chronic pelvic pain, menorrhagia-induced anemia, and impaired fertility. As a consequence, they are the most common indication for pre-menopausal hysterectomy in the USA and Japan and annually translate into a multibillion dollar healthcare problem.

View Article and Find Full Text PDF

In acute myeloid leukemia (AML), aberrant expression and mutations of transcription factors have been correlated with disease outcome. In the present study, we performed expression and mutation screening of GATA2, which is an essential transcription factor for regulation of myeloid lineage determination, in de novo pediatric AML patients. GATA2 mutations were detected in 5 of 230 patients, representing a frequency of 2.

View Article and Find Full Text PDF

Atopic diseases are characterized by the presence of Th2 cells. Recent studies, in mice and man, demonstrated that allergen-specific Th2 responses can be shifted to Th0/Th1 responses. Plasmacytoid dendritic cells (pDCs) produce large amounts of type I interferons (IFNs) after stimulation of Toll Like Receptor 9 (TLR9) and are likely to play an important role in the reorientation of these Th2 cells.

View Article and Find Full Text PDF

The plasmacytoid dendritic cell (pDC) constitutes a unique DC subset that links the innate and adaptive arm of the immune system. Whereas the unique capability of pDCs to produce large amounts of type I IFNs in response to pathogen recognition is generally accepted,their antigen-presenting function is often neglected since most studies on antigen presentation are aimed at other DC subsets. Recently, pDCs were demonstrated capable to present antigen leading to protective tumor immunity.

View Article and Find Full Text PDF

Mutations in epigenetic regulators in myelodysplastic syndromes.

Int J Hematol

January 2012

Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre and Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein zuid 8, 6525 GA Nijmegen, The Netherlands.

Until recently, the genetic aberrations that are causally linked to the pathogenesis of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms were largely unknown. Using novel technologies like high-resolution SNP-array analysis and next generation sequencing, various genes have now been identified that are recurrently mutated. Strikingly, several of the newly identified genes (ASXL1, DNMT3A, EZH2, IDH1 and IDH2, and TET2) are involved in the epigenetic regulation of gene expression.

View Article and Find Full Text PDF

Tumor microenvironments feature immune inhibitory mechanisms that prevent T cells from generating effective antitumor immune responses. Therapeutic interventions aimed at disrupting these inhibitory mechanisms have been shown to enhance antitumor immunity, but they lack direct cytotoxic effects. Here, we investigated the effect of cytotoxic cancer chemotherapeutics on immune inhibitory pathways.

View Article and Find Full Text PDF

Previous studies have shown that enteroviral RNA can be detected in blood at the onset of type 1 diabetes (T1D). The infection may play a role in triggering T1D and genetic host factors may contribute to this process. We investigated (1) whether enterovirus is present at the onset of T1D in peripheral blood mononuclear cells (PBMC), plasma, throat, or stool, and (2) whether enteroviral presence is linked with HLA-DR type and/or polymorphisms in melanoma differentiation-associated gene 5 (MDA5) and 2'-5' oligoadenylate synthetase 1 (OAS1), factors of antiviral immunity.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) represent a heterogeneous group of neoplastic hematopoietic disorders. Several recurrent chromosomal aberrations have been associated with MDS, but the genes affected have remained largely unknown. To identify relevant genetic lesions involved in the pathogenesis of MDS, we conducted SNP array-based genomic profiling and genomic sequencing in 102 individuals with MDS and identified acquired deletions and missense and nonsense mutations in the TET2 gene in 26% of these individuals.

View Article and Find Full Text PDF

C-type lectin receptors (CLRs) fulfill multiple functions within the immune system by recognition of carbohydrate moieties on foreign or (altered) self-structures. CLRs on myeloid dendritic cells (DCs) have been well characterized as pattern-recognition receptors (PRRs) combining ligand internalization with complex signaling events. Much less is known about CLR expression and function in human plasmacytoid DCs (pDCs), the major type I interferon (IFN) producers.

View Article and Find Full Text PDF

Our group and others had previously developed a high throughput procedure to map translocation breakpoints using chromosome flow sorting in conjunction with microarray-based comparative genomic hybridization (arrayCGH). Here we applied both conventional positional cloning and integrated arrayCGH procedures to the mapping of constitutional chromosome anomalies in four patients with renal cell cancer (RCC), three with a chromosome 3 translocation, and one with an insertion involving chromosome 3. In one of these patients, who was carrying a t(3;4)(p13;p15), the KCNIP4 gene was found to be disrupted.

View Article and Find Full Text PDF

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons. Although human pDCs can induce T cell responses upon viral infection, it remains unclear if pDCs can present exogenous antigens. Here, we show that human pDCs exploit FcgammaRII (CD32) to internalize antigen-antibody complexes, resulting in the presentation of exogenous antigen to T cells.

View Article and Find Full Text PDF