Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session3k7jboj7hrjfrj5v8lu7sg9rjgkdpsa6): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
1,156 results match your criteria: "RIKEN Center for Emergent Matter Science[Affiliation]"
Nature
December 2024
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.
Quasi-one-dimensional (Q1D) systems are inherently unfavorable for superconductivity due to electronic instabilities and significant quantum fluctuations. This has led to a half-century-long pursuit of strong and robust Q1D superconductors. Herein, we propose an effective multiorbital chain approach that utilizes the interorbital self-doping to not only suppress the instability but also to position the Fermi level near the band edges.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan.
For over a century, the Hall effect, a transverse effect under an out-of-plane magnetic field or magnetization, has been a cornerstone for magnetotransport studies and applications. Modern theoretical formulation based on the Berry curvature has revealed the potential that even an in-plane magnetic field can induce an anomalous Hall effect, but its experimental demonstration has remained difficult due to its potentially small magnitude and strict symmetry requirements. Here, we report observation of the in-plane anomalous Hall effect by measuring low-carrier density films of magnetic Weyl semimetal EuCd_{2}Sb_{2}.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan.
Au(SR) nanoclusters decorated with semifluorinated thiolate ligands (SFLs) self-assemble hierarchically depending on the charge state of the nanocluster component; the use of the anionic cluster ([Au]) resulted in the generation of nanofibers, whereas the neutral counterpart ([Au]) gave micron-sized filaments as a result of the bundling/twisting of the nanofibers.
View Article and Find Full Text PDFTopological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal CdAs upon alloying the trivial semiconductor ZnAs.
View Article and Find Full Text PDFPNAS Nexus
December 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample.
View Article and Find Full Text PDFNat Mater
December 2024
Department of Applied Physics, University of Tokyo, Tokyo, Japan.
Magnetic information is usually stored in ferromagnets, where the ↑ and ↓ spin states are distinguishable due to time-reversal symmetry breaking. These states induce opposite signs of the Hall effect proportional to magnetization, which is widely used for their electrical read-out. By contrast, conventional antiferromagnets with a collinear antiparallel spin configuration cannot host such functions, because of symmetry (time-reversal followed by translation t symmetry) and lack of macroscopic magnetization.
View Article and Find Full Text PDFNPJ Quantum Mater
December 2024
I. Institute of Theoretical Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate's phase stiffness, thereby limiting critical temperatures - a phenomenon known as the BCS-BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (AC) that goes beyond the limits of the lattice BCS-BEC crossover.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
The dynamic balance between formation and disaggregation of amyloid fibrils is associated with many neurodegenerative diseases. Multiple chaperones interact with and disaggregate amyloid fibrils, which impacts amyloid propagation and cellular phenotypes. However, it remains poorly understood whether and how site-specific binding of chaperones to amyloids facilitates the concerted disaggregation process and modulates physiological consequences in vivo.
View Article and Find Full Text PDFACS Org Inorg Au
December 2024
RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan.
Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh-Mo organometallic polyoxometalate, [(RhCp)MoO] (Cp = C(CH)(COOCH)), with Rh-O-Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh-Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCp)MoO] showing the highest activity, followed by [(RhCp*)MoO] (Cp* = C(CH)), and then RhCl combined with (NH)[MoO]·4HO.
View Article and Find Full Text PDFNature
December 2024
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
Although separation is entropically unfavourable, it is often essential for our life. The separation of very similar macromolecules such as deoxyribonucleic acids (DNAs) and their single nucleotide variants is difficult but holds great advantage for the progress of life science. Here we report that a particular liquid-liquid phase separation (LLPS) at a solid-liquid interface led to the partitioning of DNAs with nearly identical structures.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
Nat Commun
November 2024
Department of Chemistry, Princeton University, Princeton, 08540, NJ, USA.
Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets-LnSn (Ln = Dy, Tb)-by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice.
View Article and Find Full Text PDFScience
November 2024
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Plastics that can metabolize in oceans are highly sought for a sustainable future. In this work, we report the noncovalent synthesis of unprecedented plastics that are mechanically strong yet metabolizable under biologically relevant conditions owing to their dissociative nature with electrolytes. Salt-bridging sodium hexametaphosphate with di- or tritopic guanidinium sulfate in water forms a cross-linked supramolecular network, which is stable unless electrolytes are resupplied.
View Article and Find Full Text PDFSmall
November 2024
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea.
The recent prediction of the new magnetic class, altermagnetism, has drawn considerable interest, fueled by its potential to host novel phenomena and to be utilized in next-generation spintronics devices. Among many promising candidates, rutile RuO is a prototypical candidate for realizing the prospects of altermagnetism. However, the experimental studies on RuO are still in the early stages.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye.
The synthesis and stabilization of Pd nanoclusters on a support, as well as simultaneously achieving optimal catalytic activity, remain challenging tasks. Functionalizing the support surface with specific ligands offers a promising solution, but it often requires carefully balancing trade-offs between the reaction yield and catalyst stability. Here, we used two different ligands (propylamine and propylthiol) to functionalize the layered silicate's interlayer surface for Pd nanocluster synthesis and stabilization.
View Article and Find Full Text PDFNat Commun
November 2024
School of Engineering, College of Engineering, Computing and Cybernetics, the Australian National University, Canberra, ACT, Australia.
Excitons are fundamental quasiparticles that are ubiquitous in photoexcited semiconductors and insulators. Despite causing a sharp and strong photoabsorption near the interband absorption edge, charge-neutral excitons do not yield photocurrent in conventional photovoltaic processes unless dissociated into free charge carriers. Here, we experimentally demonstrate that excitons can directly contribute to photocurrent generation through a nonlinear light-matter interaction in a noncentrosymmetric semiconductor CuI.
View Article and Find Full Text PDFNat Commun
November 2024
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan.
Most synthetic self-assemblies grow indefinitely into size-unlimited structures, whereas some biological self-assemblies autonomously regulate their size and shape. One mechanism of such self-regulation arises from the chirality of building blocks, inducing their mutual twisting that is incompatible with their long-range ordered packing and thus halts the assembly's growth at a certain stage. This self-regulation occurs robustly in thermodynamic equilibrium rather than kinetic trapping, and therefore is attractive yet elusive.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
The Hall effect of topological quantum materials often reveals essential new physics and possesses potential for application. The magnetic Weyl semimetal is one especially interesting example that hosts an interplay between the spontaneous time-reversal symmetry-breaking topology and the external magnetic field. However, it is less known beyond the anomalous Hall effect thereof, which is unable to account for plenty of magnetotransport measurements.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
We investigate thermomagnetic transport in an ultracold atomic system with two ferromagnets linked via a magnetic quantum point contact. Using the nonequilibrium Green's function approach, we show a divergence in spin conductance and a slowing down of spin relaxation that manifest in the weak effective-Zeeman-field limit. These anomalous spin dynamics result from the magnonic critical point at which magnons become gapless due to spontaneous magnetization.
View Article and Find Full Text PDFUltramicroscopy
December 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan. Electronic address:
Ultrafast electron diffraction/microscopy technique enables us to investigate the nonequilibrium dynamics of crystal structures in the femtosecond-nanosecond time domain. However, the electron diffraction intensities are in general extremely sensitive to the excitation errors (i.e.
View Article and Find Full Text PDFSci Adv
October 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (-) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored.
View Article and Find Full Text PDFNat Comput Sci
November 2024
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.