277 results match your criteria: "RIKEN Center for Computational Science[Affiliation]"

Costly punishment sustains indirect reciprocity under low defection detectability.

J Theor Biol

January 2025

RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Hyogo, Japan. Electronic address:

Cooperation is fundamental to human societies, and indirect reciprocity, where individuals cooperate to build a positive reputation for future benefits, plays a key role in promoting it. Previous theoretical and experimental studies have explored both the effectiveness and limitations of costly punishment in sustaining cooperation. While empirical observations show that costly punishment by third parties is common, some theoretical models suggest it may not be effective in the context of indirect reciprocity, raising doubts about its potential to enhance cooperation.

View Article and Find Full Text PDF

We analyse the relationship between population influx and the effective reproduction number in the 23 wards of Tokyo during the COVID-19 pandemic to estimate hotspots of infection. We identify some patterns of population influx via factor analysis and estimate specific areas as infection-related hotspots by focusing on influx patterns that are highly correlated with the effective reproduction number. As a result, several influx patterns are assumed to be directly related to the subsequent spread of the infection.

View Article and Find Full Text PDF

Structural dynamics of a designed peptide pore under an external electric field.

Biophys Chem

December 2024

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.

View Article and Find Full Text PDF

Receptor-independent regulation of Gα13 by alpha-1-antitrypsin C-terminal peptides.

J Biol Chem

December 2024

Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Homeostatic Medicine, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address:

Alpha-1-antitrypsin (AAT), a circulating serine protease inhibitor, is an acute inflammatory response protein with anti-inflammatory functions. The C-terminal peptides of AAT are found in various tissues and have been proposed as putative bioactive peptides with multiple functions, but its mechanism of action remains unclear. We previously reported that a mouse AAT C-terminal peptide of 35 amino acids (mAAT-C) penetrates plasma membrane and associates guanine nucleotide-binding protein subunit alpha 13 (Gα13).

View Article and Find Full Text PDF

Investigating self-supervised image denoising with denaturation.

Neural Netw

December 2024

Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588, Japan; RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan. Electronic address:

Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments.

View Article and Find Full Text PDF

The abundant demand for deep learning compute resources has created a renaissance in low-precision hardware. Going forward, it will be essential for simulation software to run on this new generation of machines without sacrificing scientific fidelity. In this paper, we examine the precision requirements of a representative kernel from quantum chemistry calculations: the calculation of the single-particle density matrix from a given mean-field Hamiltonian (i.

View Article and Find Full Text PDF

The session "Data Science for Integrated Dynamic Structural Biology" was a notable success at the joint congress of the 21st IUPAB and the 62nd BSJ (Biophysics Society of Japan). This session included four invited talks and one contributed talk, which together delved into recent advancements in computational methods integrating physics, experimental data, and bioinformatics to study the structure and dynamic properties of molecular assemblies and their interactions.

View Article and Find Full Text PDF

Rationale: Polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid have persistent environmental and physiological effects. This study investigates the degradation of CFCO (n = 1-7) with neutral radical fragmentation under oxygen attachment dissociation (OAD). Unique fragments absent from collision-induced dissociation (CID) are observed.

View Article and Find Full Text PDF

Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described systematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T) computations are performed to elucidate electronic and spin states of CaMnO cluster in the key step for oxygen evolution, namely S [S with Mn(IV) = O + Tyr161-O radical] state of PSII and P [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMnO cluster in PSII and the cycle of oxygen reduction catalyzed by the Cu-Fe-Fe-Cu cluster in CcO are examined on the theoretical grounds, elucidating similar concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in PSII and four-electron reduction in CcO.

View Article and Find Full Text PDF

Indirect reciprocity under opinion synchronization.

Proc Natl Acad Sci U S A

November 2024

Max Planck Research Group 'Dynamics of Social Behavior', Max Planck Institute for Evolutionary Biology, Plön 24306, Germany.

Indirect reciprocity is a key explanation for the exceptional magnitude of cooperation among humans. This literature suggests that a large proportion of human cooperation is driven by social norms and individuals' incentives to maintain a good reputation. This intuition has been formalized with two types of models.

View Article and Find Full Text PDF

Allosteric changes in the conformational landscape of Src kinase upon substrate binding.

J Mol Biol

November 2024

Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan; Theoretical Molecular Science Laboratory, Center for Pioneering Research, Saitama, Japan. Electronic address:

Precise regulation of protein kinase activity is crucial in cell functions, and its loss is implicated in various diseases. The kinase activity is regulated by interconverting active and inactive states in the conformational landscape. However, how protein kinases switch conformations in response to different signals such as the binding at distinct sites remains incompletely understood.

View Article and Find Full Text PDF
Article Synopsis
  • Empirical parametrization is crucial in scientific methods like quantum chemistry, particularly in DFT and machine learning models, which often require large datasets, including low-quality data.
  • The study finds that DFT methods can tolerate a significant amount of low-quality data due to their physical basis, but when high-quality data is limited, adding low-quality data can enhance performance.
  • Caution is advised if over 50% of the fitting data is low-quality or when the average error exceeds 20 kJ mol, and employing transferability principles can help maintain diversity in data sets.
View Article and Find Full Text PDF

Despite the broadly acknowledged importance of solvation effects on measured UV/Vis spectra in the context of solvatochromism or chemical reactions in solution, it is still an open challenge to calculate UV/Vis spectra with predictive accuracy. This is particularly true when it comes to the impact of nuclear quantum effects on these experimental observables. In the present work, we calculate the UV/Vis absorption spectrum of indole in aqueous solution with a combination of a correlated wavefunction method for computing electronic excitation energies and enhanced path integral simulations for rigorous sampling of nuclear configurations including the quantum effects in solution.

View Article and Find Full Text PDF

RadicalPy: A Tool for Spin Dynamics Simulations.

J Chem Theory Comput

November 2024

High Performance Artificial Intelligence Systems Research Team, RIKEN Center for Computational Science, 7 Chome-1-26 Minatojima Minamimachi, Kobe, Hyogo 650-0047, Japan.

Radical pairs (electron-hole pairs, polaron pairs) are transient reaction intermediates that are found and exploited in all areas of science, from the hard realm of physics in the form of organic semiconductors, spintronics, quantum computing, and solar cells to the soft domain of chemistry and biology under the guise of chemical reactions in solution, biomimetic systems, and quantum biology. Quantitative analysis of radical pair phenomena has historically been successful by a few select groups. With this in mind, we present an intuitive open-source framework in the Python programming language that provides classical, semiclassical, and quantum simulation methodologies.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in protein structure, such as mutations, affect the binding of drug inhibitors, specifically methotrexate (MTX), to dihydrofolate reductase (DHFR).
  • Molecular dynamics simulations and Markov state modeling were used to analyze the binding thermodynamics and kinetics for both wild-type and mutant DHFR variants.
  • Findings reveal that mutations can destabilize the primary binding site, leading to increased binding at secondary sites, challenging traditional models of drug sensitivity and suggesting a more complex binding landscape.
View Article and Find Full Text PDF

The coexistence of valley polarization and topology has considerably facilitated the applications of 2D materials toward valleytronics device technology. However, isolated and distinct valleys are required to observe the valley-related quantum phenomenon. Herein, we report a new mechanism to generate in-plane magnetization direction-dependent isolated valley carriers by preserving or breaking the mirror symmetry in a 2D system.

View Article and Find Full Text PDF

Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis.

J Phys Chem B

October 2024

Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.

Observing a single biomolecule performing its function is fundamental in biophysics as it provides important information for elucidating the mechanism. High-speed atomic force microscopy (HS-AFM) is a unique and powerful technique that allows the observation of biomolecular motion in a near-native environment. However, the spatial resolution of HS-AFM is limited by the physical size of the cantilever tip, which restricts the ability to obtain atomic details of molecules.

View Article and Find Full Text PDF

Time-resolved serial femtosecond crystallography (TR-SFX) of biological molecules captures the time-evolved dynamics of the residual motions across crystal structures, enabling the visualization of structural changes in response to chemical and physical stimuli to elucidate the relationship between the structure and function of the system under study. However, interpretations of residual motions can be complex to deconvolute because of various factors such as the system's size, temporal and spatial complexity, and allosteric behavior away from active sites. Relying solely on electron density map visualization can also pose a challenge in differentiating between useful and irrelevant data.

View Article and Find Full Text PDF

Metal-ligand delocalization of metal porphyrin complexes in aqueous solutions was investigated by analyzing the electronic structure of both the metal and ligand sides using soft X-ray absorption spectroscopy (XAS) at the metal L-edges and nitrogen K-edge, respectively. In the N K-edge XAS spectra of the ligands, the energies of the CN π* peaks of cobalt protoporphyrin IX (CoPPIX) are higher than iron protoporphyrin IX (FePPIX). The energy difference between the two lowest peaks in the XAS spectrum of CoPPIX is also larger than that of FePPIX.

View Article and Find Full Text PDF

Thermal Energy Transport through Nonbonded Native Contacts in Protein.

J Phys Chem B

September 2024

Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Within the protein interior, where we observe various types of interactions, nonuniform flow of thermal energy occurs along the polypeptide chain and through nonbonded native contacts, leading to inhomogeneous transport efficiencies from one site to another. The folded native protein serves not merely as thermal transfer medium but, more importantly, as sophisticated molecular nanomachines in cells. Therefore, we are particularly interested in what sort of "communication" is mediated through native contacts in the folded proteins and how such features are quantitatively depicted in terms of local transport coefficients of heat currents.

View Article and Find Full Text PDF

Insight into the photodegradation of methylisothiazolinone and benzoisothiazolinone in aquatic environments.

Water Res

November 2024

Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.

Methylisothiazolinone (MIT) and Benzisothiazolinone (BIT) are two widely used non-oxidizing biocides of isothiazolinones. Their production and usage volume have sharply increased since the pandemic of COVID-19, inevitably leading to more release into water environment. However, their photochemical behaviors in water environment are still unclear.

View Article and Find Full Text PDF

The binding energies (BEs) of the 1s, 2s, and 2p core electrons of third-period elements (Si, P, S, Cl) were calculated using Hartree-Fock (HF) and B3LYP, BH&HLYP, and LC-BOP ΔSCF, and the shifted KS ΔSCF methods. Linear relationships between two BEs were derived and compared with the Auger parameter. The derived lines are essentially parallel, with only the intercepts differing.

View Article and Find Full Text PDF

Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy.

View Article and Find Full Text PDF

Computational evolution of social norms in well-mixed and group-structured populations.

Proc Natl Acad Sci U S A

August 2024

Max Planck Research Group Dynamics of Social Behavior, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany.

Models of indirect reciprocity study how social norms promote cooperation. In these models, cooperative individuals build up a positive reputation, which in turn helps them in their future interactions. The exact reputational benefits of cooperation depend on the norm in place, which may change over time.

View Article and Find Full Text PDF

In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy core-excitation energies from 1s orbitals of the second-row atoms (1s → π*, 1s → σ*, 1s → *, and 1s → Rydberg), but underestimates the core-excitation energies from 1s orbitals of the third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to LCgau-core-BOP. We named it LC2gau-core-BOP, which achieves a mean absolute error (MAE) of 0.

View Article and Find Full Text PDF