3,156 results match your criteria: "Qilu University of Technology Shandong Academy of Sciences[Affiliation]"

A Ratiometric Fluorescent Sensor for the Detection of Norfloxacin in Foods Based on ZIF-8 Core-Shell-Structured Molecularly Imprinted Encoded Microspheres.

Polymers (Basel)

November 2024

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The development of fluorescent sensors with high sensitivity and fast response times is attracting the interest of more and more researchers. Herein, dual-emission ratiometric molecularly imprinted fluorescent encoded microspheres were fabricated and applied for the fast detection of norfloxacin. Core-shell-structured imprinted polymers with ZIF-8 as the supporting core were obtained first and two quantum dots with green and red emission provided the fluorescent signal.

View Article and Find Full Text PDF

Graphitic carbon nitride (CN) is a kind of visible light-responsive photocatalyst that has been of great interest in wastewater treatment. However, its environmental impact and biological effect remains to be elucidated. This study investigated the effect of CN nanosheets on bacterial abundance and antibiotic tolerance in wastewater.

View Article and Find Full Text PDF

The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial for monitoring and optimizing production processes. However, traditional chemical analysis methods are often time-consuming and costly, limiting their application in real-time quality control.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is characterized by high heterogeneity, aggressiveness, and high morbidity and mortality rates. With machine learning (ML) algorithms, patient, tumor, and treatment features can be used to develop and validate models for predicting survival. In addition, important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.

View Article and Find Full Text PDF

Prodigiosin hydrogel to promote healing of trauma-infected multidrug-resistant mice wounds.

Int J Pharm X

December 2024

School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Wound infections caused by Multidrug-resistant (MRSA) have been regarded as a challenging problem in clinic for the long time. In this study, based on the excellent antimicrobial effect of prodigiosin(PG) and the ability of hydrogel dressing in terms of tissue repair and regeneration, we prepared the PG hydrogel as a treatment for the wound infection induced by MRSA. Rheological tests indicated that PG hydrogel as a semi-solid gel had good mechanical properties.

View Article and Find Full Text PDF

Treatment of bacterial infected full-thickness wounds remains a great challenge in clinic. Herein, a HYP hydrogel was prepared using carboxymethyl chitosan, dialdehyde carboxymethyl cellulose, and marine snail peptide (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg) as starting materials. The marine snail peptide with good antioxidant activity could remove the reactive oxygen species in wound sites, thereby alleviating the excessive inflammatory response.

View Article and Find Full Text PDF

Coastal salt-marsh wetlands have important ecological value, and play an important role in coastal blue carbon sink. However, under the influence of various external and natural factors, coastal wetland ecosystems worldwide have severely degraded, leading to biodiversity loss and ecological damage. Based on satellite remote sensing data and deep learning methods, it is an effective means to quickly monitor the spatial distribution of coastal wetlands, which is very important for the protection and restoration of coastal wetlands.

View Article and Find Full Text PDF

Electric field-induced alignment of Ag/Au nanowires for ultrasensitive in situ detection of Interleukin-6.

Biosens Bioelectron

March 2025

School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Shandong Institute of Mechanical Design and Research, Jinan, 250353, China. Electronic address:

Interleukin-6 (IL-6) is a key parameter and critical role in cancer progression. However, for detection of IL-6 in colorectal cancer diagnosis, developing a sensitive biosensor is necessary and very important. In this paper, to enhance the sensitivity of IL-6 electrochemical biosensor, the electric field was used to orient arrangement of silver nanowires (AgNWs) to be free-standing AgNWs electrode.

View Article and Find Full Text PDF

Role of lignin removal on the properties of crude pulp fibers from corn stover via high-temperature formic acid pulping.

Int J Biol Macromol

December 2024

Key Laboratory of Pulp and Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

An effective removal of lignin could reduce the chromogenic groups of lignin in pulp. Herein, corn stover was pulped via the formic acid to investigate the effects of cooking time and temperature on the crude pulp properties. The strong hydrogen ion action of formic acid helped inhibiting both the re-polymerization of degraded lignin molecules and the subsequent adsorption on fiber.

View Article and Find Full Text PDF

The significant challenge in achieving regeneration for conventional molecularly imprinted polymers (MIPs) restricts their promising application in continuous monitoring of biochemical molecules closely related to human health, especially nonelectroactive molecules. This is because they are either limited to a single use or require removal of imprinted templates through chemical washing steps, which is clearly impractical for sustainable monitoring. Here, a class of regenerable MIP biosensors, taking nonelectroactive branched-chain amino acids (BCAAs) as templates and methyldopa as a functional monomer, was engineered to achieve repeatable regeneration and target recognition.

View Article and Find Full Text PDF
Article Synopsis
  • - The incorporation of surface photonic crystal (SPC) and embedded photonic crystal (EPC) structures into quantum well solar cells has resulted in significantly improved light absorption and emission, with PL intensities increasing by 89% for SPC and 114% for EPC cells.
  • - EPC solar cells show a 31% higher short-circuit current (Isc) compared to reference cells, indicating better carrier generation, while SPC cells have a 6% increase in Isc and also higher open-circuit voltage.
  • - The overall efficiency improvements include a 10.6% increase for SPC and 7.7% for EPC cells, with various fill factors suggesting enhanced charge carrier collection, emphasizing the potential of phot
View Article and Find Full Text PDF

Photothermal materials are considered as promising materials because they can convert clean solar energy into thermal and electrical energy. However, developing degradable photothermal materials with highly efficient solar-thermal-electric energy conversion performance remains a huge challenge. Here, a superhydrophobic bio-polyimide/carbon quantum dots aerogel (S-BioPI/CQDs) is synthesized.

View Article and Find Full Text PDF

Insights into multi-scale structural evolution and dielectric response of poly(methyl acrylate) under pre-strain: A simulation study.

J Chem Phys

December 2024

Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.

The structural evolution of dielectric elastomer induced by pre-strain is a complex, multi-scale process that poses a significant challenge to a deep understanding of the effect of pre-strain. Through simulation results, we identify the variation in the dielectric constant and multi-scale (electronic structure, molecular chain conformation, and aggregation structure) response of poly(methyl acrylate). As the pre-strain increases, the dielectric constant initially rises (below 200% pre-strain) and then declines (above 200% pre-strain).

View Article and Find Full Text PDF

Recognition methods have made significant strides across various domains, such as image classification, automatic segmentation, and autonomous driving. Efficient identification of leaf diseases through visual recognition is critical for mitigating economic losses. However, recognizing leaf diseases is challenging due to complex backgrounds and environmental factors.

View Article and Find Full Text PDF

The advancement of bio-based materials derived from renewable resources provides a pivotal strategic approach to address the problems of environmental pollution and scarce fossil resources. In this study, a series of bio-based waterborne polyurethanes (WPUs) with enhanced UV resistance, photothermal effect and corrosion resistance were prepared by using sorbitan monooleate (SP) and castor oil (CO) as vegetable polyols together with the introduction of sodium lignosulfonate modified of diethanolamine (DML). The WPU coatings of only 100 μm thickness, exhibited UV blocking rate > 99 % between 200 and 320 nm.

View Article and Find Full Text PDF

Coagulation could effectively remove microplastics (MPs). However, MPs coagulated sludge was still a hazardous waste that is difficult to degrade. Nitrogen-doped carbon composite (N-PSMPC) was prepared by carbonizing MPs coagulated aluminum sludge (MP-CA) doped with cheap urea in this study.

View Article and Find Full Text PDF

Interfacial engineering of Co(OH)@CN composites: A study of p-n heterojunctions with enhanced xylose/xylan photoreforming and CO reduction performance.

J Colloid Interface Sci

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

The construction of p-n heterojunction is considered a prominent method for promoting efficient separation/migration of photoinduced carriers, thereby enhancing photocatalytic performance. Herein, a series of nanoflower spherical Co(OH)@CN-x p-n heterojunction photocatalysts were fabricated using a simplified one-step hydrothermal strategy. Notably, Co(OH)@CN-2 exhibited optimal performance, showcasing a carbon monoxide (CO) evolution rate of 46.

View Article and Find Full Text PDF

Carbonized wood loading sustainable tannin used as free-standing electrodes for assembling heavy metal-free supercapacitors.

Int J Biol Macromol

January 2025

Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China. Electronic address:

The design of heavy metal-free thick supercapacitor electrodes with excellent energy storage performance through a novel and effective strategy represents an attractive yet challenging area of research. In this study, a sustainable redox-active tannic acid (TA) is loaded on the carbonized wood (CW) collector to construct a low-curvature, high-capacity, heavy metal-free supercapacitor electrode. The uniform loading of TA on the surface of the CW cell wall is achieved through the combined action of mutually stable hydrogen bonding and π-π interactions, which constructs a fast electron transport channel in the collector.

View Article and Find Full Text PDF

A New Methylbutyric Acid Derivative with Pro-angiogenesis Activity from the Mangrove Fungus Penicillium polonicum M-3.

Chem Biodivers

December 2024

Qingdao Agricultural University, School of sciences, 700# Changcheng Road, Qingdao, China, 266109, Qingdao, CHINA.

A new methylbutyric acid derivative penianoic acid A (1), along with fifteen known compounds (2-16), was isolated and identified from the culture extract of Penicillium polonicum M-3 sourced from Malaysian mangrove root soil. Their structures were determined by detailed spectroscopic analysis of NMR and MS data and quantum chemical calculations of ECD and NMR (with DP4+ probability analysis). The isolated compounds were evaluated for pro-angiogenesis activity using zebrafish in vivo model.

View Article and Find Full Text PDF

Constructing robust and antioxidant polyurethane-lignin coatings with biodegradable properties for grass press paper films.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

The practical applications of grass plastic mulch films are limited because their residues turn into microplastics and enter the food chain. This study solves this problem by preparing a degradable cellulose-lignin-waterborne polyurethane composite grass paper film. First, waterborne polyurethane prepared using a mild method was composited with lignin via an addition reaction and the formation of hydrogen bonding between the -OH groups of lignin and the -NCO and -OH groups of polyurethane.

View Article and Find Full Text PDF

Transglutaminase-triggered dual gradients of mechanical and biochemical cues self-assembling peptide hydrogel for guiding MC3T3-E1 cell behaviors.

Int J Biol Macromol

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China. Electronic address:

The mechanical properties and bioactive motif densities of extracellular matrix materials play crucial roles in regulating cell behaviors, such as cell adhesion, migration, proliferation, and differentiation. However, current studies on cellular responses to ECM predominantly concentrated on polymer hydrogels featuring a single factor, such as the mechanical strength, the types of bioactive motifs, and the morphology of the polymers. This limited focus may overlook the complex interplay of multiple factors.

View Article and Find Full Text PDF

Monitoring heavy metal concentrations in marine sediments is important for assessing marine environmental quality, protecting ecological health, and preventing human health risks. Visible-near infrared spectroscopy technology can overcome the shortcomings of traditional methods. Taking marine sediments from Jiaozhou Bay, Qingdao as an example, this paper collected visible-near infrared spectroscopy of the marine sediments and innovatively proposed a two-scale LSTM with attention mechanism method to predict heavy metal concentrations in marine sediments.

View Article and Find Full Text PDF

Ferroptosis, as an iron-dependent cell death mediated by lipid peroxidation, has sparked great interest in the tumor research community. Targeting ferroptosis has been proven to be a new therapeutic opportunity for inhibiting tumor growth. However, it is challenging to precisely characterize the metabolic pattern of ferroptosis in heterogeneous tumors and further identify ferroptosis-associated metabolic vulnerabilities for tumor treatment.

View Article and Find Full Text PDF
Article Synopsis
  • * Directed evolution was employed to improve the cyclomaltodextrin glucanotransferase (CGTase) enzyme, resulting in mutations that increased its affinity for maltose and overall transglycosylation activity.
  • * The N33K/S211G mutant demonstrated a 32.6% increase in trehalose yield, indicating enhanced performance of the double enzyme method for potential industrial application.
View Article and Find Full Text PDF