26 results match your criteria: "QMB Innovation Centre[Affiliation]"

Integrin-αvβ6 targeted peptide-toxin therapy in a novel αvβ6-expressing immunocompetent model of pancreatic cancer.

Pancreatology

May 2024

Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK. Electronic address:

Previously we reported that a novel αvβ6-specific peptide-drug conjugate (SG3299) could eliminate established human pancreatic ductal adenocarcinoma (PDAC) xenografts. However the development of effective therapies for PDAC, which is an essential need, must show efficacy in relevant immunocompetent animals. Previously we reported that the KPC mouse transgenic PDAC model that closely recapitulates most stages of development of human PDAC, unlike in humans, failed to express αvβ6 on their tumours or metastases.

View Article and Find Full Text PDF

Despite advances by recently approved antibody-drug conjugates in treating advanced gastric cancer patients, substantial limitations remain. Here, several key obstacles are overcome by developing a first-in-class ultrasmall (sub-8-nanometer (nm)) anti-human epidermal growth factor receptor 2 (HER2)-targeting drug-immune conjugate nanoparticle therapy. This multivalent fluorescent core-shell silica nanoparticle bears multiple anti-HER2 single-chain variable fragments (scFv), topoisomerase inhibitors, and deferoxamine moieties.

View Article and Find Full Text PDF

Peroxide-cleavable linkers for antibody-drug conjugates.

Chem Commun (Camb)

February 2023

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

Antibody-drug conjugates containing peroxide-cleavable arylboronic acid linkers are described, which target the high levels of reactive oxygen species (ROS) in cancer. The arylboronic acid linkers rapidly release a payload in the presence of hydrogen peroxide, but remain stable in plasma. Anti-HER2 and PD-L1 peroxide-cleavable ADCs exhibited potent cytotoxicity .

View Article and Find Full Text PDF

The bromodomain and extra-terminal (BET) family of proteins includes BRD2, BRD3, BRD4, and the testis-specific protein, BRDT, each containing two N-terminal tandem bromodomain (BRD) modules. Potent and selective inhibitors targeting the two bromodomains are required to elucidate their biological role(s), with potential clinical applications. In this study, we designed and synthesized a series of benzimidazole-6-sulfonamides starting from the azobenzene compounds MS436 (7 a) and MS611 (7 b) that exhibited preference for the first (BD1) over the second (BD2) BRD of BET family members.

View Article and Find Full Text PDF

Antibody-drug conjugate (ADC) research has typically focused on the release of highly potent cytotoxic agents to achieve antitumor efficacy. However, recently approved ADCs trastuzumab deruxtecan and sacituzumab govitecan release lower-potency topoisomerase inhibitors. This has prompted interest in ADCs that release lower-potency cytotoxic drugs to potentially enhance therapeutic index and reduce unwanted toxicity.

View Article and Find Full Text PDF

Simultaneous monitoring of multiple attributes of pyrrolobenzodiazepine antibody-drug conjugates by size exclusion chromatography - high resolution mass spectrometry.

J Pharm Biomed Anal

October 2021

NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland. Electronic address:

Antibody-drug conjugates (ADCs) are an emerging class of oncology treatments combining the unique specificity of monoclonal antibodies with the highly cytotoxic properties of small molecule compounds. Pyrrolobenzodiazepines (PBDs) are highly potent agents capable of inhibiting cellular DNA replication which leads to apoptosis. To ensure efficacy and patient safety upon administration of such toxic and heterogeneous molecules, their structure and quality attributes must be closely monitored.

View Article and Find Full Text PDF

Background: Regulatory T cells (T) contribute to an immunosuppressive tumor microenvironment. They play an important role in the establishment and progression of tumors with high T infiltration and present a major obstacle to tumor eradication by immunotherapies. Numerous strategies have been attempted to deplete or block T, although their success has been limited.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) containing pyrrolobenzodiazepine (PBD) dimers are being evaluated clinically in both hematologic and solid tumors. These include ADCT-301 (camidanlumab tesirine) and ADCT-402 (loncastuximab tesirine) in pivotal phase II trials that contain the payload tesirine, which releases the PBD dimer warhead SG3199. An important consideration in future clinical development is acquired resistance.

View Article and Find Full Text PDF

: The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) has remained at <5% for decades because no effective therapies have been identified. Integrin αvβ6 is overexpressed in most PDAC and represents a promising therapeutic target. Thus, we attempted to develop an αvβ6-specific peptide-drug conjugate (PDC) for therapy of PDAC.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) containing pyrrolobenzodiazepine (PBD) dimers are currently being evaluated in human oncology clinical trials with encouraging results. To further improve the therapeutic window, next-generation PBD drug-linker design has focused on the inclusion of additional tumor-selective triggers and use of lower-potency PBDs. β-Glucuronidase is a well-known target for discovery prodrugs due to increased presence in tumor cells and microenvironment.

View Article and Find Full Text PDF

Purpose: Dynamic in-situ proton (H) magnetic resonance imaging (MRI) and H T-relaxometry experiments are described in an attempt to: (i) understand the physical processes, that occur during the reconstitution of lyophilized bovine serum albumin (BSA) and monoclonal antibody (mAb) proteins; and (ii) objectify the reconstitution time.

Methods: Rapid two-dimensional H MRI and diffusion weighted MRI were used to study the temporal changes in solids dissolution and characterise water mass transport characteristics. One-shot T relaxation time measurements were also acquired in an attempt to quantify the reconstitution time.

View Article and Find Full Text PDF

An Alternative Focus for Route Design for the Synthesis of Antibody-Drug Conjugate Payloads.

J Org Chem

April 2019

Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit , AstraZeneca , Macclesfield , United Kingdom.

An analysis of Antibody-Drug Conjugate Payload manufacturing has revealed that the majority of the cost is associated with the use of high-containment facilities for the latter stages of the synthesis. To make a significant reduction in the Cost of Goods (CoGs), a new approach to route design has been introduced which focuses on minimizing the number of steps that require high containment. This approach has been exemplified in a new synthesis of tesirine, including the first application of a ring-closing copper(I)/TEMPO aerobic oxidation to the pyrrolobenzodiazepine ring system, affording a 60% reduction in CoGs.

View Article and Find Full Text PDF

Experimental procedures and H and C NMR of the heterotrifunctional linker used for preparation of dual drug conjugates and PBD payload are included. Procedure for carrying preparation of antibody linker conjugate via thiol maleimide conjugation and antibody drug conjugates (ADCs) using copper assisted click reaction and oxime ligation, their cell viability assay and western blotting procedures of the resultant conjugates are detailed. Also, reduced mass spectroscopy results and in vitro cytotoxicity of antibody drug conjugates used in this article are shown.

View Article and Find Full Text PDF

Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads.

Bioorg Med Chem Lett

December 2018

Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, United States. Electronic address:

Codelivery of multiple therapeutic agents with different anticancer mechanisms can overcome drug resistance as well as generate additive or synergistic anticancer effects that may enhance the antitumor efficacy. Antibody-drug conjugates (ADCs) can be used for highly specific delivery of multiple therapeutic agents with different anticancer mechanisms, though more research is required towards designing flexible platforms on which dual drug ADCs could be prepared. Herein, we describe the synthesis of a heterotrifunctional linker that could be used to construct flexible platforms for preparing dual-cytotoxic drug conjugates in a site-specific manner.

View Article and Find Full Text PDF

Purpose: Antibody-drug conjugates (ADC) utilizing noncleavable linker drugs have been approved for clinical use, and several are in development targeting solid and hematologic malignancies including multiple myeloma. Currently, there are no reliable biomarkers of activity for these ADCs other than presence of the targeted antigen. We observed that certain cell lines are innately resistant to such ADCs, and sought to uncover the underlying mechanism of resistance.

View Article and Find Full Text PDF

Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI of 151.

View Article and Find Full Text PDF

Discovery of Peptidomimetic Antibody-Drug Conjugate Linkers with Enhanced Protease Specificity.

J Med Chem

February 2018

Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States.

Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells.

View Article and Find Full Text PDF
Article Synopsis
  • Three new pyrrolobenzodiazepine (PBD) drug-linkers have been created for use in antibody-drug conjugates (ADCs), each featuring a maleimide for connecting to antibodies and varying link types (alkyne, triazole, piperazine).
  • These linkers showed strong in vitro potency against certain cancer cell lines, with IC values ranging from 11 to 48 ng/mL in HER2-positive models, while also being ineffective in HER2-negative models.
  • In vivo studies demonstrated substantial anti-tumor effects in HER2-positive tumor models at different dosages, highlighting the effectiveness of noncleavable PBD-ADCs, especially in
View Article and Find Full Text PDF

To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity. A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure-activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer.

View Article and Find Full Text PDF

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC.

View Article and Find Full Text PDF

A novel pyrrolobenzodiazepine dimer payload, SG3227, was rationally designed based on the naturally occurring antitumour compound sibiromycin. SG3227 was synthesized from a dimeric core in an efficient fashion. An unexpected room temperature Diels-Alder reaction occurred during the final step of the synthesis and was circumvented by use of an iodoacetamide conjugation moiety in place of a maleimide.

View Article and Find Full Text PDF

We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus.

View Article and Find Full Text PDF

Straightforward Glycoengineering Approach to Site-Specific Antibody-Pyrrolobenzodiazepine Conjugates.

ACS Med Chem Lett

November 2016

Antibody Discovery and Protein Engineering and Oncology Research, MedImmune , One MedImmune Way, Gaithersburg, Maryland 20878, United States.

Antibody-drug conjugates (ADCs) have become a powerful platform to deliver cytotoxic agents selectively to cancer cells. ADCs have traditionally been prepared by stochastic conjugation of a cytotoxic drug using an antibody's native cysteine or lysine residues. Through strategic selection of the mammalian expression host, we were able to introduce azide-functionalized glycans onto a homogeneously glycosylated anti-EphA2 monoclonal antibody in one step.

View Article and Find Full Text PDF

Pyrrolobenzodiazepine dimers are an emerging class of warhead in the field of antibody-drug conjugates (ADCs). Tesirine (SG3249) was designed to combine potent antitumor activity with desirable physicochemical properties such as favorable hydrophobicity and improved conjugation characteristics. One of the reactive imines was capped with a cathepsin B-cleavable valine-alanine linker.

View Article and Find Full Text PDF

Despite the many advances in the treatment of hematologic malignancies over the past decade, outcomes in refractory lymphomas remain poor. One potential strategy in this patient population is the specific targeting of IL2R-α (CD25), which is overexpressed on many lymphoma and leukemic cells, using antibody-drug conjugates (ADC). ADCT-301 is an ADC composed of human IgG1 HuMax-TAC against CD25, stochastically conjugated through a dipeptide cleavable linker to a pyrrolobenzodiazepine (PBD) dimer warhead with a drug-antibody ratio (DAR) of 2.

View Article and Find Full Text PDF