24 results match your criteria: "Pskov State University[Affiliation]"

This research paper presents a new fundamental approach for evaluating accurate ab initio quartic, sextic, and octic centrifugal distortion parameters of A-reduced rotational effective Hamiltonians of asymmetric top molecules. In this framework, the original Watson Hamiltonian, expanded up to sextic terms of kinetic and potential energies, is subjected to a series of vibrational and rotational operator unitary transformations, leading to reduced Watson effective Hamiltonians for the equilibrium configuration, ground state, and weakly perturbed vibrationally excited states. The proposed scheme is based on a numerical-analytic implementation of the sixth-order Van Vleck operator perturbation theory with the systematic normal ordering of vibrational rising and lowering operators (a†, a) and cylindrical angular momentum operators (Jz, J+, J-).

View Article and Find Full Text PDF

An in silico redesign of the secondary quinone electron acceptor (Q) binding pocket of the D1 protein of Photosystem II (PSII) suggested that mutations of the F265 residue would affect atrazine binding. Chlamydomonas reinhardtii mutants F265T and F265S were produced to obtain atrazine-hypersensitive strains for biosensor applications, and the mutants were indeed found to be more atrazine-sensitive than the reference strain IL. Fluorescence and thermoluminescence data agree with a weak driving force and confirm slow electron transfer but cannot exclude an additional effect on protonation of the secondary quinone.

View Article and Find Full Text PDF
Article Synopsis
  • Plastocyanin is a small protein that helps transfer electrons by forming temporary complexes with cytochrome and photosystem 1, making traditional structure determination difficult.
  • Due to its transient nature, researchers have turned to AI, particularly AlphaFold 3, to predict the structures of these short-lived complexes.
  • The study found that the structure predicted by AlphaFold 3 closely matched experimental data from cryo-EM and molecular dynamics, whereas it differed from the orientation suggested by previously available NMR data.
View Article and Find Full Text PDF

Tubulins are essential proteins, which are conserved across all eukaryotic species. They polymerize to form microtubules, cytoskeletal components of paramount importance for cellular mechanics. The microtubules combine an extraordinarily high flexural rigidity and a non-equilibrium behavior, manifested in their intermittent assembly and disassembly.

View Article and Find Full Text PDF

Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood.

View Article and Find Full Text PDF

Widely used in biomedical and bioanalytical applications, the detonation nanodiamonds (NDs) are generally considered to be biocompatible and non-toxic to a wide range of eukaryotic cells. Due to their high susceptibility to chemical modifications, surface functionalisation is often used to tune the biocompatibility and antioxidant activity of the NDs. The response of photosynthetic microorganisms to redox-active NDs is still poorly understood and is the focus of the present study.

View Article and Find Full Text PDF

Non-photochemical quenching (NPQ) of excited chlorophyll states is essential for protecting the photosynthetic apparatus (PSA) from the excessive light-induced damage in all groups of oxygenic photosynthetic organisms. The key component of the NPQ mechanism in green algae and some other groups of algae and mosses is the LhcSR protein of the light harvesting complex (LHC) protein superfamily. In vascular plants, LhcSR is replaced by PsbS, another member of the LHC superfamily and a subunit of photosystem II (PSII).

View Article and Find Full Text PDF

The effect of the toxicant 2,3',4,4',6-pentachlorobiphenyl (PCB-119) on the growth, chlorophyll content, and PSII activity of C. sorokiniana cells was investigated. A strong negative effect of the toxicant was observed at PCB concentration of 0.

View Article and Find Full Text PDF

We recently developed a chlorophyll fluorescence method (activated F rise) for estimating if a light wavelength preferably excites PSI or PSII in plants. Here, the method was tested in green microalgae: , , , , , and . The species displayed a plant-like action spectra of F rise, suggesting that PSII/PSI absorption ratio is conserved from higher plants to green algae.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are among the most exploited carbon allotropes in nanosensing, bioengineering, and photobiological applications, however, the interactions of nanotubes with the photosynthetic process and structures are still poorly understood. We found that SWCNTs are not toxic to the photosynthetic apparatus of the model unicellular alga Chlamydomonas reinhardtii and demonstrate that this carbon nanomaterial can protect algal photosynthesis against photoinhibition. The results show that the inherent phytotoxicity of the nanotubes may be overcome by an intentional selection of nanomaterial characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • The investigation focused on modeling and understanding the regulation of electron transport processes in the photosynthetic membrane using mathematical and computer simulations at Lomonosov Moscow State University.
  • Detailed kinetic models were created to analyze thylakoid membrane processes and using data fitting techniques, researchers were able to infer previously undetermined parameters.
  • This research utilized various modeling methods, including agent-based Monte Carlo modeling and multiparticle simulations, to explore the dynamics and interactions at molecular and subcellular levels involved in photosynthesis.
View Article and Find Full Text PDF

Monitoring of the photosynthetic activity of natural and artificial biocenoses is of crucial importance. Photosynthesis is the basis for the existence of life on Earth, and a decrease in primary photosynthetic production due to anthropogenic influences can have catastrophic consequences. Currently, great efforts are being made to create technologies that allow continuous monitoring of the state of the photosynthetic apparatus of terrestrial plants and microalgae.

View Article and Find Full Text PDF

The paper presents the results of recent work at the Department of Biophysics of the Biological Faculty, Lomonosov Moscow State University on the kinetic and multiparticle modeling of processes in the photosynthetic membrane. The detailed kinetic models and the rule-based kinetic Monte Carlo models allow to reproduce the fluorescence induction curves and redox transformations of the photoactive pigment P700 in the time range from 100 ns to dozens of seconds and make it possible to reveal the role of individual carriers in their formation for different types of photosynthetic organisms under different illumination regimes, in the presence of inhibitors, under stress conditions. The fitting of the model curves to the experimental data quantifies the reaction rate constants that cannot be directly measured experimentally, including the non-radiative thermal relaxation reactions.

View Article and Find Full Text PDF
Article Synopsis
  • Metformin is commonly used to treat type 2 diabetes, but individual responses to the drug can vary significantly, potentially due to genetic differences.
  • A study analyzed the effects of specific genetic variants on metformin response in 299 patients, identifying the rs12208357 variant as significantly impacting treatment outcomes.
  • Machine learning models incorporating genetic and clinical factors, like gender and body measurements, were developed to better predict metformin response, showing potential for personalized diabetes treatment approaches.
View Article and Find Full Text PDF

Background: Trypanosoma theileri species complex includes parasites of Bovidae (cattle, sheep, goat, etc.) and Cervidae (deer) transmitted mainly by Tabanidae (horse flies and deerflies) and keds (Hippoboscidae). While morphological discrimination of species is challenging, two big clades, TthI and TthII, each containing parasites isolated from bovids and cervids, have been identified phylogenetically.

View Article and Find Full Text PDF

Using a mathematical simulation approach, we studied the dynamics of the green microalga phosphate metabolism response to shortage and subsequent replenishing of inorganic phosphate in the medium. A three-pool interaction model was used to describe the phosphate uptake from the medium, its incorporation into the cell organic compounds, its storage in the form of polyphosphates, and culture growth. The model comprises a system of ordinary differential equations.

View Article and Find Full Text PDF

The inhibitory effects of cadmium (CdSO ) on the primary photosynthetic processes were studied in vivo in Pisum sativum by using Multi-function Plant Efficiency Analyser (M-PEA-2). Photosynthetic parameters related to photosystem (PS) II, PS I and intersystem electron carriers were calculated from the light-induced kinetics of prompt chlorophyll a fluorescence (OJIP transient), delayed chlorophyll a fluorescence (DF), and 820 nm modulated reflection (MR). Low-dose exposure to cadmium (20 μm CdSO for 48 h) reduced probability of electron transfer from plastoquinones to the terminal electron acceptors of PSI (δ ) accompanied by a decrease in the rate of P and PC reduction (V ) and the magnitude of the I step on the DF kinetics.

View Article and Find Full Text PDF

Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells.

Proc Natl Acad Sci U S A

December 2020

Antares Fluoresci Research, Dangar Island, NSW 1797, Australia.

Nitrogen (N) is an essential macronutrient for microalgae, influencing their productivity, composition, and growth dynamics. Despite the dramatic consequences of N starvation, many free-living and endosymbiotic microalgae thrive in N-poor and N-fluctuating environments, giving rise to questions about the existence and nature of their long-term N reserves. Our understanding of these processes requires a unequivocal identification of the N reserves in microalgal cells as well as their turnover kinetics and subcellular localization.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are among the most exploited carbon allotropes in the emerging technologies of molecular sensing and bioengineering. However, the advancement of algal nanobiotechnology and nanobionics is hindered by the lack of methods for the straightforward visualization of the CNTs inside the cell. Herein, we present a handy and label-free experimental strategy based on visible Raman microscopy to assess the internalization of single-walled carbon nanotubes (SWCNTs) using the model photosynthetic alga as a recipient.

View Article and Find Full Text PDF

The plastoquinone (PQ) pool mediates electron flow and regulates photoacclimation in plants. Here we report the action spectrum of the redox state of the PQ pool in Arabidopsis thaliana, showing that 470-500, 560 or 650-660 nm light favors Photosystem II (PSII) and reduces the PQ pool, whereas 420-440, 520 or 690 nm light favors Photosystem I (PSI) and oxidizes PQ. These data were used to construct a model predicting the redox state of PQ from the spectrum of any polychromatic light source.

View Article and Find Full Text PDF

To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)-taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium sp.

View Article and Find Full Text PDF

The significance of the spectral composition of light for growth and other physiological functions of plants moved to the focus of "plant science" soon after the discovery of photosynthesis, if not earlier. The research in this field recently intensified due to the explosive development of computer-controlled systems for artificial illumination and documenting photosynthetic activity. The progress is also substantiated by recent insights into the molecular mechanisms of photo-regulation of assorted physiological functions in plants mediated by photoreceptors and other pigment systems.

View Article and Find Full Text PDF

Components of the photosynthetic electron transport chain in pea (Pisum sativum L.) leaves under in vivo conditions showed the following sensitivity to the inhibitory action of chromium(VI): intersystem electron transport > photosystem I > photosystem II. Inhibitory effects of chromium (VI) (KCrO, Cr) on the light reactions of photosynthesis were studied in vivo in Pisum sativum L.

View Article and Find Full Text PDF

Spontaneous electrical activity is recorded in two species of marine cercariae, Cryptocotyle lingua and Himasthla elongata, with different types of swimming-by glass microelectrode recordings. Slow local field potentials (sLFPs) of low amplitude and fast high amplitude action potentials (APs) are found. The shape of the sLFPs is different in the species and correlates with the type of swimming.

View Article and Find Full Text PDF