9 results match your criteria: "Prifysgol Aberystwyth University[Affiliation]"

Strain to shine: stretching-induced three-dimensional symmetries in nanoparticle-assembled photonic crystals.

Nat Commun

June 2024

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Stretching elastic materials containing nanoparticle lattices is common in research and industrial settings, yet our knowledge of the deformation process remains limited. Understanding how such lattices reconfigure is critically important, as changes in microstructure lead to significant alterations in their performance. This understanding has been extremely difficult to achieve due to a lack of fundamental rules governing the rearrangements.

View Article and Find Full Text PDF

The emulsion polymerization process via which core-interlayer-shell polymer nanoparticles are synthesized is engineered to offer a crucial control of the eventual size and monodispersity of the polystyrene (PS) cores. We examine the role of key experimental parameters, optimizing the temperature, reactant purity, and agitation (stirring) rate. The subsequent addition of a poly(methyl-methacrylate) (PMMA) grafting layer and a poly(ethyl-acrylate) (PEA) shell layer produces composite particles, which are shear-orderable into opaline films, known as 'polymer opals'.

View Article and Find Full Text PDF

We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of 'scattering cones', which showed strong reflectivity in the 275-315 nm range.

View Article and Find Full Text PDF

A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic crystal media, using an optical shear cell. The hard-sphere/"sticky"-shell design of these polymeric composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency, and temperature.

View Article and Find Full Text PDF

Human visual performance degrades substantially as the angular distance from the fovea increases. This decrease in performance is found for both binocular and monocular vision. Although analysis of the statistics of natural images has provided significant insights into human visual processing, little research has focused on the statistical content of binocular images at eccentric angles.

View Article and Find Full Text PDF

We report an experimental and computational investigation into the solvatochromism of a perylene diimide derivative. The alkyl swallowtail substituents allowed solubility in many solvents of widely differing polarity, with a complicated resultant behaviour, illustrating both negative and positive solvatochromism as a function of dielectric constant. Luminescence quantum yield and optical absorption linewidth displayed an inverse correlation, indicating varying degrees of intermolecular aggregation, and a remarkably similar trend was found between the peak absorption wavelength and the solvent boiling point, illustrating the dependency of aggregation on the solvent interactions.

View Article and Find Full Text PDF

We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid "gum-like" media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or "polymer opals") with intense tunable structural color.

View Article and Find Full Text PDF

Large-scale ordering of nanoparticles using viscoelastic shear processing.

Nat Commun

June 2016

Nanophotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.

Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour.

View Article and Find Full Text PDF

We present a study of the dynamic shear ordering of viscoelastic photonic crystals, based on core-shell polymeric composite particles. Using an adapted shear-cell arrangement, the crystalline ordering of the material under conditions of oscillatory shear is interrogated in real time, through both video imaging and from the optical transmission spectra of the cell. In order to gain a deeper understanding of the macroscopic influences of shear on the crystallization process in this solvent-free system, the development of bulk ordering is studied as a function of the key parameters including duty cycle and shear-strain magnitude.

View Article and Find Full Text PDF