8 results match your criteria: "Poznan University of Technology Piotrowo[Affiliation]"

Molecular Dynamics of Steroidal Rotors Probed by Theoretical, Spectroscopic and Dielectric Methods.

Chemistry

April 2024

Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland.

Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms.

View Article and Find Full Text PDF

Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine.

View Article and Find Full Text PDF

Cellular membranes are surrounded by an aqueous buffer solution containing various ions, which influence the hydration layer of the lipid head groups. At the same time, water molecules hydrating the lipids play a major role in facilitating the organisation and dynamics of membrane lipids. Employing fluorescence microscopy imaging and fluorescence recovery after photobleaching measurements, we demonstrate that the cooperativity between water and sodium (Na) ions is crucial to maintain lipid mobility upon the removal of the outer hydration layer of the lipid membrane.

View Article and Find Full Text PDF

The article presents the method of producing gold nanoparticles using a high voltage arc discharge of alternating current with a frequency of 50 Hz in distilled water. The equipment necessary to carry out the process is described, including the construction of the reactor and the power source of a very simple design necessary to generate a high-voltage arc discharge between the electrodes. Arc discharge processes were carried out two times for 2 and 5 minutes, respectively, in ambient conditions without thermostating the reactor, at medium temperature varying in the range of 25-70 °C.

View Article and Find Full Text PDF

In this work, we characterize the adsorption of pentacene molecules on Ir(111) and their behaviour as a function of temperature. While room temperature adsorption preserves the molecular structure of the five benzene rings and the bonds between carbon and hydrogen atoms, we find that complete C-H molecular break up takes place between 450 K and 550 K, eventually resulting in the formation of small graphene islands at temperatures larger than 800 K. Most importantly a reversible temperature-induced dehydrogenation process is found when the system is annealed/cooled in a hydrogen atmosphere with a pressure higher than 5 × 10 mbar.

View Article and Find Full Text PDF