292,995 results match your criteria: "Poznań University of Technology[Affiliation]"

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

Metastable state preceding shear zone instability: Implications for earthquake-accelerated landslides and dynamic triggering.

Proc Natl Acad Sci U S A

January 2025

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.

Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.

View Article and Find Full Text PDF

Genome-wide association mapping of bruchid resistance loci in soybean.

PLoS One

January 2025

Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.

View Article and Find Full Text PDF

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

PLoS One

January 2025

Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

Lightweight container technology has emerged as a fundamental component of cloud-native computing, with the deployment of containers and the balancing of loads on virtual machines representing significant challenges. This paper presents an optimization strategy for container deployment that consists of two stages: coarse-grained and fine-grained load balancing. In the initial stage, a greedy algorithm is employed for coarse-grained deployment, facilitating the distribution of container services across virtual machines in a balanced manner based on resource requests.

View Article and Find Full Text PDF

Music pre-processing methods are currently becoming a recognized area of research with the goal of making music more accessible to listeners with a hearing impairment. Our previous study showed that hearing-impaired listeners preferred spectrally manipulated multi-track mixes. Nevertheless, the acoustical basis of mixing for hearing-impaired listeners remains poorly understood.

View Article and Find Full Text PDF

Transient Directing Group-Assisted Palladium-Catalyzed C4-Alkynylation of Indoles.

J Org Chem

January 2025

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

Pd-catalyzed C4-selective alkynylation of indoles was established by employing glycine as a transient directing group. This reaction exhibits high regioselectivity with the tolerance of a wide scope of functional groups to afford diverse alkynylated indoles in moderate to good yields. Moreover, the readily accessible scale-up synthesis and further decorations to achieve multifunctionalized indoles demonstrate the synthetic potential of this protocol.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

Background And Objective: Migrant and refugee women, families, and their children can experience significant language, cultural, and psychosocial barriers to engage with child and family services. Integrated child and family health Hubs are increasingly promoted as a potential solution to address access barriers; however, there is scant literature on how to best implement them with migrant and refugee populations. Our aim was to explore with service providers and consumers the barriers, enablers, and experiences with Hubs and the resulting building blocks required for acceptable Hub implementation for migrant and refugee families.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Due to incessant contamination of the groundwater system near the dumpsite in southwestern Nigeria Basement Complex, this study seeks to evaluate the impact of the Odogbo dumpsite on the local groundwater system by integrating geophysical and geochemical methodologies. Aeromagnetic data covering the study area was acquired, processed, and enhanced to delineate basement features that could potentially be passing plumes to the groundwater system. Concurrently, geoelectric methods using 2-D dipole-dipole imaging and vertical electrical sounding (VES) were utilized to characterize the vulnerability indices of the lithologies underlying the dumpsite.

View Article and Find Full Text PDF

Overweight and obesity are associated with adverse psychological outcomes, compromised body composition, and reduced quality of life (QoL). While exercise training has been proposed as an effective intervention, its impact on these outcomes remains unclear. This systematic review and meta-analysis evaluated the effects of exercise training on psychological outcomes, body composition, and QoL in overweight or obese adults.

View Article and Find Full Text PDF

Th e Laplace transform formulation proposed by Di and Gilbert [J. Acoust. Soc.

View Article and Find Full Text PDF

Pd-catalyzed Asymmetric Hydrogenolysis Rearrangement of Allylic Esters to Access Axially Chiral Olefins.

Angew Chem Int Ed Engl

January 2025

Dalian University of Technology, School of Chemical Engineering, No 2 Linggong Road,Ganjingzi District, 116024, Dalian, CHINA.

The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)3BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99% ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.

View Article and Find Full Text PDF

Electrocatalytic and Photocatalytic N Fixation Using Carbon Catalysts.

Nanomaterials (Basel)

January 2025

Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.

View Article and Find Full Text PDF

Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities.

Nanomaterials (Basel)

January 2025

Institute of Information Photonics Technology, School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.

Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices.

View Article and Find Full Text PDF

Study of Thermal Effects in Fused-Tapered Pure Passive Fibers and Signal Combiners.

Nanomaterials (Basel)

January 2025

School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.

This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.

View Article and Find Full Text PDF

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment.

View Article and Find Full Text PDF