8 results match your criteria: "Polytechnique Center[Affiliation]"

This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.

View Article and Find Full Text PDF

The growing consumer demand for natural and eco-friendly food products motivates the development and evaluation of new and natural inputs for the food industry. So, this work explores the potential of grape pomace (GP) from winemaking, a food production residue, to obtain an anthocyanin-rich, ready-to-use extract with antioxidant activity that can confer improved color-rich gummy candies. The anthocyanins' chemical nature and the predictive COSMO-SAC model was considered for screening the best natural eutectic mixture for anthocyanin extraction.

View Article and Find Full Text PDF

Microbial bacterioruberin: The new C50 carotenoid player in food industries.

Food Microbiol

December 2024

Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS, 92003, CEDEX 9, F-97744, Saint-Denis, France.

The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.

View Article and Find Full Text PDF

Tailor-made solvents for microbial carotenoids recovery.

Appl Microbiol Biotechnol

February 2024

Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, PR, Brazil.

In recent years, microbial carotenoids have emerged as a promising alternative for the pharmaceutical and food industries, particularly in promoting human health due to their potent antioxidant and antimicrobial properties. Microbial carotenoids, particularly those produced by yeast, bacteria, and microalgae, are synthesized intracellularly, requiring the use of solvents for their effective extraction and recovery. The conventional use of toxic volatile organic solvents (VOCs) like hexane, petroleum ether, and dimethyl sulfoxide in the extraction of microbial carotenoids has been common.

View Article and Find Full Text PDF

Ketocarotenoids adonirubin and adonixanthin: Properties, health benefits, current technologies, and emerging challenges.

Food Chem

June 2024

Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France.

Given their multifaceted roles, carotenoids have garnered significant scientific interest, resulting in a comprehensive and intricate body of literature that occasionally presents conflicting findings concerning the proper characterization, quantification, and bioavailability of these compounds. Nevertheless, it is undeniable that the pursuit of novel carotenoids remains a crucial endeavor, as their diverse properties, functionalities and potential health benefits make them invaluable natural resources in agri-food and health promotion through the diet. In this framework, particular attention is given to ketocarotenoids, viz.

View Article and Find Full Text PDF

Solid-liquid equilibria of triacylglycerols and vitamin E mixtures.

Food Res Int

November 2023

Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil. Electronic address:

Oils and fats are important ingredients for food and pharmaceutical industries. Their main compounds, such as triacylglycerols (TAG), are responsible for determining their physical properties during food storage and consumption. Lipid-rich foods are also sources of minority compounds, which is the case of vitamin E, mainly represented by (±)-α-tocopherol.

View Article and Find Full Text PDF

Deep eutectic solvents as an alternative for extraction of flavonoids from soybean (Glycine max (L) Merrill) and okara: An experimental and computational approach based on COSMO-SAC model.

Food Res Int

November 2023

Laboratory of Extraction, Applied Thermodynamics and Equilibrium - EXTRAE, School of Food Engineering, University of Campinas, 80 Monteiro Lobato Street, 13083-062 Campinas, Brazil. Electronic address:

In this study, different Deep Eutectic Solvents based on choline chloride ([Ch]Cl) with carboxylic acids, sugars, and glycerol, were investigated as alternative solvents for the extraction of flavonoids from soybean and okara. Initially, the COSMO-SAC was investigated as a tool in solvent screening for the extraction of flavonoids. Experimental validation was performed using total flavonoid analysis with the solvents that showed greater interaction with the solutes.

View Article and Find Full Text PDF

Synthesis, characterization, solution chemistry and anticancer activity of [NiCl(PhP-N(R)-PPh)] (R = 2-CHPy, CHPh and p-tol) complexes.

J Inorg Biochem

March 2023

Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Chemistry, Federal University of Paraná, Polytechnique Center, 81531-980 Curitiba, PR, Brazil. Electronic address:

In this work three Ni complexes with general formula [NiCl(PhP-N(R)-PPh)], R = 2-CHPy (Py = pyridine) - 1, CHPh (Ph = phenyl) - 2 and p-tol (p-tol = p-tolyl) - 3, were synthesized and characterized. These complexes were obtained in high yield by the reaction of NiCl.6HO and the corresponding diphenylphosphinoamine ligand (PhP-N(R)-PPh) in CHCl/MeOH (1:1) solution, at room temperature (∼25 °C), and characterized by H and P {H} NMR, vibrational spectroscopy in the infrared region, electronic spectroscopy in the UV-Vis regions, elemental analysis (%C, %H, %N) and single-crystal X-ray diffraction.

View Article and Find Full Text PDF