3,573 results match your criteria: "Polymer Science Unit & Centre for Advanced Materials[Affiliation]"

The rich set of mechanoreceptors found in human skin offers a versatile engineering interface for transmitting information and eliciting perceptions, potentially serving a broad range of applications in patient care and other important industries. Targeted multisensory engagement of these afferent units, however, faces persistent challenges, especially for wearable, programmable systems that need to operate adaptively across the body. Here we present a miniaturized electromechanical structure that, when combined with skin as an elastic, energy-storing element, supports bistable, self-sensing modes of deformation.

View Article and Find Full Text PDF
Article Synopsis
  • Multidomain proteins and intrinsically disordered proteins (IDPs) are characterized by a range of conformations rather than fixed structures, making their high-resolution analysis difficult.
  • Integrative methods that merge low-resolution experimental data with computer simulations are now commonly used to overcome these challenges, although simulating larger proteins with both folded and disordered sections remains complex.
  • The SOP-MULTI force field introduced in this work enhances the simulation of such proteins by combining established models for folded and disordered proteins, allowing for accurate representation of their conformational ensembles and maintaining essential structural features.
View Article and Find Full Text PDF

The activity and stability of a heterogeneous water oxidation catalyst inspired by the Photosystem II - Oxygen Evolving Center (PSII-OEC) is reported. Ca-doped birnessite MnO supported on a liquid crystalline reduced graphene oxide (LCrGO) substrate exhibited unprecedented performance for an abiological catalyst at pH 7, including an exceedingly low onset overpotential of 0.52 V (.

View Article and Find Full Text PDF

Synthesis and Binding Properties of High-Affinity Histidine-Bearing Polymers for Wood Lignin.

Macromol Rapid Commun

November 2024

Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.

The pursuit of molecules capable of binding to wood lignin is pivotal for advancing lignin degradation technology, particularly when combined with lignin degradation catalysts. In this study, synthetic polymers bearing histidine moieties, demonstrating remarkable affinity for wood lignin are reported. These polymers, featuring varying degrees of histidine substitution in the form of histidine methyl esters, are synthesized through controlled radical polymerization of an activated ester-bearing monomer, employing a fluorescein-labeled chain transfer agent and subsequent postpolymerization amidation with histidine methyl ester.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) are promising ionic conductors for developing high-specific-energy solid-state lithium metal batteries. However, developing SPEs with both high ionic conductivity and interfacial compatibility remains a challenge. Here, we propose a design concept of an anion-modulated polymer electrolyte (termed AMPE) for high-voltage Li metal batteries.

View Article and Find Full Text PDF

Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed.

View Article and Find Full Text PDF

A selective dual-signal electrochemical paper-based device using imprinted sensors for voltammetric and impedance analysis of 4-NQO and carcinoembryonic antigen (CEA).

Anal Chim Acta

November 2024

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand. Electronic address:

Background: Carcinoembryonic Antigen (CEA) and 4-nitroquinoline-N-oxide (4-NQO) are cancer markers that play a crucial role in tumor risk assessment and early cancer diagnosis. Therefore, it is in demand to develop a fast, accurate, simple, and cost-effective method to detect these cancer markers for quick and early stage-cancer diagnosis and treatment.

Results: Herein, we report a dual signaling approach for direct and indirect signal transduction of cancer biomarker binding on molecularly imprinted-electrodes integrated on an ePAD, enabling sensitive and selective quantitative analysis of 4-NQO and CEA.

View Article and Find Full Text PDF

Symmetry related proton conductivity tunability via aliovalent metal substitution in imidazolium templated stable metal-organic framework hybrid membranes.

J Colloid Interface Sci

February 2025

Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, PR China; Key Laboratory of Interface Science and Engineering in Advanced Material of Ministry of Education, College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China. Electronic address:

Proton-conducting materials have gained popularity owing to their extensive applications in biologic/chemical sensors, supercapacitors, proton sieving, and proton-exchange-membrane fuel cells. To date, the most commercially used polymer membrane has been the Nafion series that exhibits conductivity exceeding 0.1 S cm, however, this series is expensive, has poor dimensional stability, and requires a complex synthesis process.

View Article and Find Full Text PDF

Comparative effectiveness of treatments for recurrent infection: a network meta-analysis of randomized controlled trials.

Front Pharmacol

October 2024

Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China.

Background: Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated infectious diarrhea. A major clinical challenge is recurrent CDI (rCDI) without effective standard drug-based therapy. Additionally, a comprehensive comparison of various therapy effectiveness in rCDI patients is still under investigation.

View Article and Find Full Text PDF

This study investigates backbone engineering and evaluates the thermoelectric properties of FeCl-doped naphthobisthiadiazole (NTz)-based donor-acceptor (D-A) conjugated polymer films. The NTz acceptor unit is coupled with three distinct donor units, namely dialkylated terthiophene (3T), dialkylated quaterthiophene (4T), and dialkylated bisthienyl thienothiophene (2T-TT) to yield copolymers designated as PNTz3T, PNTz4T, and PNTzTT. The difference in donor units leads to diverse molecule stacking and electronic properties, which can be systematically discovered via the three polymers.

View Article and Find Full Text PDF

Cassava, corn, wheat, and sweet potato native starches: A promising biopolymer in the production of capsules by electrospraying.

Int J Biol Macromol

November 2024

Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.

Native starches have a high potential for producing capsules by electrospraying despite still being little explored as biopolymeric material. Thus, the present study aimed to investigate the electrospraying capacity of native starches from different sources (cassava, corn, wheat, and sweet potato). The concentration of starch in the polymer solutions was varied from 3 % to 10 % (w/v) to investigate the impact of both starch source and concentration on the electrospraying process.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) are a class of synthetic recognition materials that offer a cost-effective and robust alternative to antibodies. While MIPs have found predominant use in biosensing and diagnostic applications, their potential for alternative uses, such as enzyme inhibition, remains unexplored. In this work, we synthesized a range of acrylamide-based hydrogel MIP microparticles (35 μm) specific for the recognition of α-amylase.

View Article and Find Full Text PDF

Strong Hydrogen Bonds Sustain Even-Odd Effects in Poly(ester amide)s with Long Alkyl Chain Length in the Backbone.

Biomacromolecules

November 2024

POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain.

The number of methylene groups between strongly interacting functional groups within polymer repeating units induces even-odd effects on thermal and mechanical properties. However, detailed studies correlating the even-odd effect with structural changes are still lacking. In this work, we establish correlations between the structure and thermal properties of poly(ester amide)s containing long alkyl chain lengths.

View Article and Find Full Text PDF

Calcium phosphate (CaP) is a widely used biocompatible and bioactive material for bone tissue engineering due to its similarity to the mineral component of natural bone. Amorphous calcium phosphate is a highly reactive form of CaP that can undergo a phase transformation into a more stable crystalline phase, making it an attractive candidate for bone regeneration applications. However, amorphous CaP is highly unstable in aqueous solutions, which limits its use in practical applications.

View Article and Find Full Text PDF

The adsorption of drugs on nanoplastics has severe biological impact.

Sci Rep

October 2024

Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.

Micro- and nanoplastics can interact with various biologically active compounds forming aggregates of which the effects have yet to be understood. To this end, it is vital to characterize these aggregates of key compounds and micro- and nanoplastics. In this study, we examined the adsorption of the antibiotic tetracycline on four different nanoplastics, made of polyethylene (PE), polypropylene (PP), polystyrene (PS), and nylon 6,6 (N66) through chemical computation.

View Article and Find Full Text PDF

This paper introduces a novel insulated cable designed to enhance the distribution system's capabilities. Accordingly, high-density polyethylene loaded with varying concentrations of zinc oxide (ZnO) nanoparticles (NPs) ranging from 0.0 to 5 wt% was prepared using the melt-blending technique.

View Article and Find Full Text PDF

Protecting Against Postsurgery Oral Cancer Recurrence with an Implantable Hydrogel Vaccine for In Situ Photoimmunotherapy.

Adv Sci (Weinh)

December 2024

Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.

Oral squamous cell carcinoma (OSCC) often recurs aggressively and metastasizes despite surgery and adjuvant therapy, driven by postoperative residual cancer cells near the primary tumor site. An implantable in situ vaccine hydrogel was designed to target residual OSCC cells post-tumor removal. This hydrogel serves as a reservoir for the sustained localized release of δ-aminolevulinic acid (δ-ALA), enhancing protoporphyrin IX-mediated photodynamic therapy (PDT), and a polydopamine-hyaluronic acid composite for photothermal therapy (PTT).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used spatiotemporal microscopy and quantum transport calculations to observe how charge carriers behave in these nanoribbons after being photoexcited, revealing high mobility and diffusivity.
  • * Findings suggest that the impressive charge carrier mobility is due to minimal interference from defects and inter-ribbon hopping, supporting the viability of graphene nanoribbons for efficient electronic applications.
View Article and Find Full Text PDF

Polymer dielectrics possess outstanding advantages for high-power energy storage applications such as high breakdown strength (E) and efficiency (η), while both of them decrease rapidly at elevated temperatures. Although several strategies have been evaluated to enhance Eb and heat resistance, the discharged energy density (U) is still limited by the planar conjugated structure. In this study, a novel approach to manipulate polymer morphology is introduced, thereby influencing dielectric properties.

View Article and Find Full Text PDF

Two novel conjugated polymers (polymer 1 and polymer 2) containing trisheterocyclic systems and carbazole as the copolymerization unit were synthesized by the Suzuki coupling reaction and characterized using NMR spectroscopy and other methods. 4'-(3,5-Dibromophenyl)-2,2':6',2''-terpyridine and 2,2'-(4-(3,5-dibromophenyl)pyridine-2,6-diyl)dithiazole were used as the recognizing units of the two polymers respectively. The polymers show blue-violet fluorescence when dissolved in THF.

View Article and Find Full Text PDF

Coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effects of phospholipids on the aggregation of hydrophilic, modified carbon-nanoparticle fillers in -polyisoprene (-PI) composites. The MARTINI force field was applied to model dipalmitoylphosphatidylcholine (DPPC) lipids and hydrophilic modified fullerenes (HMFs). The simulations of DPPC in -PI composites show that the DPPC lipids self-assemble to form a reverse micelle in a rubber matrix.

View Article and Find Full Text PDF

All Roads Lead to Rome: Isomers with Divergent Cathode Modification Mechanisms toward Ohmic Contact.

J Am Chem Soc

November 2024

College of Textiles and Clothing State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.

Cathode interfacial layers (CILs) hold utmost importance for achieving ohmic contact at the organic semiconductor-cathode interface of organic photovoltaic devices. Delving deep into diverse design principles and working mechanisms is of great significance for designing novel CILs with high performance. Herein, two novel nonamine-based CILs are designed: one featuring a cyclopentadiene unit, designated as CIL-cp; while the other, lacking cyclopentadiene, is referred to as CIL-ph, which is an isomer of CIL-cp.

View Article and Find Full Text PDF

We designed and synthesized an amide-based monomer decorated with furan as the diene unit and maleimide as the dienophile unit at its termini. Single-crystal X-ray diffraction (SCXRD) analysis of its crystal revealed a head-to-tail arrangement of molecules with furan and maleimide groups of neighboring molecules proximally placed in an arrangement suitable for their topochemical Diels-Alder cycloaddition (TDAC) to form a linear polymer. The monomer underwent a spontaneous single-crystal-to-single-crystal (SCSC) polymerization at room temperature, yielding a linear polymer with oxa-bicyclic linkage.

View Article and Find Full Text PDF

Hydrogels are indispensable for a variety of applications. Conventional biomaterial-based hydrogels, typically made from proteins or polysaccharides, often suffer from high costs, poor mechanical properties, and limited chemical functionality for modification. In this work, we present a novel hydrogel developed from modified castor oil, which is a renewable and cost-effective resource.

View Article and Find Full Text PDF

Within the realm of organic solar cells (OSCs), designing new high-efficiency polymer donors remains a significant challenge. Achieving the right balance in polymer backbone planarity is crucial: excessive planarity can lead to undesirable aggregation, while insufficient planarity can hinder the charge transport efficiency. In this study, we designed and synthesized an imidazole-based acceptor (A) unit for the first time and then investigated the impact of backbone planarity on charge transport capacity and power conversion efficiency (PCE).

View Article and Find Full Text PDF