4 results match your criteria: "Poland. biohm@univ.gda.pl[Affiliation]"

Biodegradation of nodularin and effects of the toxin on bacterial isolates from the Gulf of Gdańsk.

Water Res

June 2009

Department of Marine Biology and Ecology, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.

Nodularin (NOD), a cyclic pentapeptide produced by the cyanobacterium Nodularia spumigena, is one of the most abundant natural metabolites occurring in the Baltic Sea. The present study investigated the role of this compound in the interactions between cyanobacteria and other bacteria. The toxin inhibited the growth of 15 out of 32 bacterial strains isolated from water and sediments of the Gulf of Gdańsk, southern Baltic Sea.

View Article and Find Full Text PDF

Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk, southern Baltic Sea.

Environ Toxicol

February 2007

Department of Marine Biology and Ecology, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.

In the Gulf of Gdańsk, as in other parts of the Baltic Sea, toxic blooms of Nodularia spumigena are an annual phenomenon. In the present work, the accumulation of nodularin (NOD), a cyanobacterial pentapeptide hepatotoxin, in sediments, blue mussels, and flounders from the Gulf of Gdańsk was studied by enzyme-linked immunosorbent assay (ELISA). In the surface layers of the sediments NOD concentration ranged from 2.

View Article and Find Full Text PDF

Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry.

Rapid Commun Mass Spectrom

August 2007

Department of Marine Biology and Ecology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.

Nodularin is a potent hepatotoxic cyclic pentapeptide produced by planktonic cyanobacterium Nodularia spumigena. Bloom and culture samples of the cyanobacterium collected and isolated from the Gulf of Gdańsk, southern Baltic Sea, were analyzed. Hybrid quadrupole-time-of-flight liquid chromatography/mass spectrometry/mass spectrometry (TOF-LC/MS/MS) with ionspray (ISP) and collision-induced dissociation (CID) were used to characterize nodularin and its analogues.

View Article and Find Full Text PDF

The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation.

Chemosphere

November 2006

Department of Marine Biology and Ecology, University of Gdańsk, Al Marszałka Piłsudskiego 46, Gdynia, Poland.

This study investigates the decomposition of NOD by UV irradiation. Water solutions of pure NOD and NOD-containing Nodularia extract as well as Nodularia filaments collected on filters were exposed to UV-A, UV-B, and white fluorescent light (VIS) during 48 h experiments. In VIS, the toxin was fairly stable and only 3.

View Article and Find Full Text PDF