56 results match your criteria: "Pohang University of Science and Technology. Pohang[Affiliation]"

How magnetic reconnection is triggered or suppressed is an important outstanding problem. By considering pinching of a current sheet that has formed at non-equilibrium, we show that the background plasma beta is a major controlling factor in the onset and nature of magnetic reconnection. A high plasma beta inhibits a current sheet from pinching down to kinetic scales required for collisionless reconnection, while a low beta facilitates it.

View Article and Find Full Text PDF

Ultrasonography is one of the key medical imaging modalities for evaluating breast lesions. For differentiating benign from malignant lesions, computer-aided diagnosis (CAD) systems have greatly assisted radiologists by automatically segmenting and identifying features of lesions. Here, we present deep learning (DL)-based methods to segment the lesions and then classify benign from malignant, utilizing both B-mode and strain elastography (SE-mode) images.

View Article and Find Full Text PDF

This study presents the development of a β-hairpin (tryptophan zipper, Trpzip)-based molecular tweezer (MT) that can control the folding and binding of α-helical peptides. When an α-helix isolated from the p53 protein was conjugated with Trpzip in an optimized macrocyclic structure, the folded β-hairpin stabilized the helix conformation through the side chain-to-side chain stapling strategy, which notably enhanced target (hDM2) affinity of the peptide. On the other hand, the helicity and binding affinity were significantly reduced when the hairpin was unfolded by a redox stimulus.

View Article and Find Full Text PDF

Organic thin-film transistors (OTFTs) with ideal behavior are highly desired, because nonideal devices may overestimate the intrinsic property and yield inferior performance in applications. In reality, most polymer OTFTs reported in the literature do not exhibit ideal characteristics. Supported by a structure-property relationship study of several low-disorder conjugated polymers, here, we present an empirical selection rule for polymer candidates for textbook-like OTFTs with high reliability factors (100% for ideal transistors).

View Article and Find Full Text PDF
Article Synopsis
  • Titanium mesh (Ti-mesh) is used in guided bone regeneration to support bone reconstruction but faces challenges like soft tissue invasion and low bioactivity.
  • A new bioengineered coating using a mussel adhesive protein fused with a peptide (MAP-RGD) enhances bone regeneration by blocking unwanted cells and delivering growth factors locally.
  • Testing in rats showed that this approach significantly improved bone formation and maturity, suggesting it could make GBR treatments more effective.
View Article and Find Full Text PDF

Facile synthesis of porous transition metal hydroxides from a poly(4-vinyl pyridine) film by controlling pH.

Nanoscale Adv

May 2023

Department of Chemical Engineering, National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology Pohang Republic of Korea

Non-noble transition metal hydroxides have been widely used in electrochemical devices because of low cost and multiple redox states. In particular, self-supported porous transition metal hydroxides are used to improve the electrical conductivity, as well as achieving fast electron and mass transfer and a large effective surface area. Herein, we introduce facile synthesis of self-supported porous transition metal hydroxides using a poly(4-vinyl pyridine) (P4VP) film.

View Article and Find Full Text PDF

Exogenous contrast agents in photoacoustic imaging help improve spatial resolution and penetration depth and enable targeted molecular imaging. To screen efficient photoacoustic signaling materials as contrast agents, we propose a light absorption-weighted figure of merit (FOM) that can be calculated using material data from the literature and numerically simulated light absorption cross-sections. The calculated light absorption-weighted FOM shows that a Ti nanodisc has a photoacoustic conversion performance similar to that of an Au nanodisc and better than that of a Pt nanodisc.

View Article and Find Full Text PDF

Wearable electronics is a growing field that has important applications in advanced human-integrated systems with high performance and mechanical deformability, especially foldable characteristics. Although foldable electronics such as rollable TVs (LG signature OLED R) or foldable smartphones (Samsung Galaxy Z fold/flip series) have been successfully established in the market, these devices are still powered by rigid and stiff batteries. Therefore, to realize fully wearable devices, it is necessary to develop state-of-the-art foldable batteries with high performance and safety in dynamic deformation states.

View Article and Find Full Text PDF

Li-ion rechargeable batteries are promising systems for large-scale energy storage solutions. Understanding the electrochemical process in the cathodes of these batteries using suitable techniques is one of the crucial steps for developing them as next-generation energy storage devices. Due to the broad energy range, synchrotron X-ray techniques provide a better option for characterizing the cathodes compared to the conventional laboratory-scale characterization instruments.

View Article and Find Full Text PDF
Article Synopsis
  • - Amorphous sodium titanates were synthesized using a mid-temperature sol-gel method and were tested as selective adsorbents for strontium in solutions containing cesium and metal cations like Al, Mg, Ca, and Mn.
  • - The sodium titanate exhibited a maximum strontium adsorption capacity of 193.93 mg/g, effectively removing 99.9% of strontium and 40.67% of cesium from selected aqueous solutions.
  • - Strontium adsorption occurred rapidly, following pseudo-second-order kinetics and a generalized Langmuir isotherm model, achieving equilibrium within 1 hour and resulting in the formation of a strontium titanate structure.
View Article and Find Full Text PDF

Persistent radicals are potential building blocks of novel materials in many fields. Recently, highly stable persistent radicals are considered to be within reach, thanks to several radical stabilization strategies such as spin delocalization and steric protection. N-Heterocyclic carbene (NHC)-derived substituents can be attached to a radical center for these purposes, as illustrated by numerous NHC-stabilized radicals reported in the last two decades.

View Article and Find Full Text PDF

Bladder cancer (BC) is the most common urinary malignancy; however accurate diagnosis and prediction of recurrence after therapies remain elusive. This study aimed to develop a biosignature of immunotherapy-based responses using gene expression data. Publicly available BC datasets were collected, and machine learning (ML) approaches were applied to identify a novel biosignature to differentiate patient subgroups.

View Article and Find Full Text PDF

Controlling the oxide ion (O) concentration in oxides is essential to develop advanced ionic devices, solid oxide fuel cells, smart windows, memory devices, energy storage devices, and so on. Among many oxides several transition metal (TM)-based perovskite oxides show high oxide ion conductivity, and their physical properties show high sensitivity to the change of the oxide ion concentration. Here, the change in the oxide ion concentration is shown through the overlayer deposition on the SrFeCoO (SFCO) oxygen sponge film.

View Article and Find Full Text PDF

Atmospheric pressure plasma (APP) generates highly reactive species that are useful for surface activation. We demonstrate a fast regeneration of iron oxides, that are popular catalysts in various industrial processes, using microwave-driven argon APP under ambient conditions. The surface treatment of hematite powder by the APP with a small portion of hydrogen (0.

View Article and Find Full Text PDF

Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g of NH at 298 K reversibly without structural deformation.

View Article and Find Full Text PDF

CDy1 is a powerful tool to distingusih embryonic stem cells for reprogramming studies and regeneration medicine. However, the stem cell selectivity mechanism of CDy1 has not been fully understood. Here, we report ALDH2 and ABCB1 as the molecular targets of CDy1, elucidated by live-cell affinity-matrix and ABC transporter CRISPRa library screening.

View Article and Find Full Text PDF

We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves.

View Article and Find Full Text PDF

The advent of special types of polymeric semiconductors, known as "polymer blends," presents new opportunities for the development of next-generation electronics based on these semiconductors' versatile functionalities in device applications. Although these polymer blends contain semiconducting polymers (SPs) mixed with a considerably high content of insulating polymers, few of these blends unexpectedly yield much higher charge carrier mobilities than those of pure SPs. However, the origin of such an enhancement has remained unclear owing to a lack of cases exhibiting definite improvements in charge carrier mobility, and the limited knowledge concerning the underlying mechanism thereof.

View Article and Find Full Text PDF

Multicolor fluorescence imaging is a powerful tool visualizing the spatiotemporal relationship among biomolecules. Here, we report that commonly employed organic dyes exhibit a blue-conversion phenomenon, which can produce severe multicolor image artifacts leading to false-positive colocalization by invading predefined spectral windows, as demonstrated in the case study using EGFR and Tensin2. These multicolor image artifacts become much critical in localization-based superresolution microscopy as the blue-converted dyes are photoactivatable.

View Article and Find Full Text PDF

In this work, the effect of ion-selective membranes on the detailed carbon balance was systematically analyzed for high-rate CO reduction in GDE-type flow electrolyzers. By using different ion-selective membranes, we show nearly identical catalytic selectivity for CO reduction, which is primarily due to a similar local reaction environment created at the cathode/electrolyte interface the introduction of a catholyte layer. In addition, based on a systematic exploration of gases released from electrolytes and the dynamic change of electrolyte speciation, we demonstrate the explicit discrepancy in carbon balance paths for the captured CO at the cathode/catholyte interface reaction with OH when using different ion-selective membranes: (i) the captured CO could be transported through an anion exchange membrane in the form of CO , subsequently releasing CO along with O in the anolyte, and (ii) with a cation exchange membrane, the captured CO would be accumulated in the catholyte in the form of CO , while (iii) with the use of a bipolar membrane, the captured CO could be released at the catholyte/membrane interface in the form of gaseous CO.

View Article and Find Full Text PDF

Human skin plays a critical role in a person communicating with his or her environment through diverse activities such as touching or deforming an object. Various electronic skin (E-skin) devices have been developed that show functional or geometrical superiority to human skin. However, research into stretchable E-skin that can simultaneously distinguish materials and textures has not been established yet.

View Article and Find Full Text PDF

Single junction binary all-small-molecule (ASM) organic solar cells (OSCs) with power conversion efficiency (PCE) beyond 14% are achieved by using non-fullerene acceptor Y6 as the electron acceptor, but still lag behind that of polymer OSCs. Herein, an asymmetric Y6-like acceptor, BTP-FCl-FCl, is designed and synthesized to match the recently reported high performance small molecule donor BTR-Cl, and a record efficiency of 15.3% for single-junction binary ASM OSCs is achieved.

View Article and Find Full Text PDF

Glycyl-tRNA synthetase 1 (GARS1), a cytosolic enzyme secreted from macrophages, promotes apoptosis in cancer cells. However, the mechanism underlying GARS1 secretion has not been elucidated. Here, we report that GARS1 is secreted through unique extracellular vesicles (EVs) with a hydrodynamic diameter of 20-58 nm (mean diameter: 36.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are secreted nano-sized vesicles that contain cellular proteins, lipids, and nucleic acids. Although EVs are expected to be biologically diverse, current analyses cannot adequately characterize this diversity because most are ensemble methods that inevitably average out information from diverse EVs. Here we describe a single vesicle analysis, which directly visualizes marker expressions of individual EVs using a total internal-reflection microscopy and analyzes their co-localization to investigate EV subpopulations.

View Article and Find Full Text PDF

User-interactive electronic skin (e-skin) with a distinguishable output has enormous potential for human-machine interfaces and healthcare applications. Despite advances in user-interactive e-skins, advances in visual user-interactive therapeutic e-skins remain rare. Here, a user-interactive thermotherapeutic device is reported that is fabricated by combining thermochromic composites and stretchable strain sensors consisting of strain-responsive silver nanowire networks on surface energy-patterned microwrinkles.

View Article and Find Full Text PDF