5 results match your criteria: "Pohang University of Science and Technology 77 Cheongam-Ro[Affiliation]"

Macroscopic assemblies of carbon nanotubes (CNTs) usually have a poor alignment and a low packing density due to their hierarchical structure. To realize the inherent properties of CNTs at the macroscopic scale, the CNT assemblies should have a highly aligned and densified structure. Shear-aligning processes are commonly employed for this purpose.

View Article and Find Full Text PDF

Metal (M) contact with a semiconductor (S) introduces metal-induced gap states (MIGS), which makes it difficult to study the intrinsic electrical properties of S. A bilayer of metal with graphene (Gr), ., a M/Gr bilayer, may form a contact with S to minimize MIGS.

View Article and Find Full Text PDF

The rational design of previously unidentified materials that could realize excellent electrochemical-controlled optical and charge storage properties simultaneously, are especially desirable and useful for fabricating smart multifunctional devices. Here, a facile synthesis of a 1D -d conjugated coordination polymer (Ni-BTA) is reported, consisting of metal (Ni)-containing nodes and organic linkers (1,2,4,5-benzenetetramine), which could be easily grown on various substrates via a scalable chemical bath deposition method. The resulting Ni-BTA film exhibits superior performances for both electrochromic and energy storage functions, such as large optical modulation (61.

View Article and Find Full Text PDF

Sub-nanometric particles (SNPs) of atomic cluster sizes have shown great promise in many fields such as full atom-to-atom utilization, but their precise production and stabilization at high mass loadings remain a great challenge. As a solution to overcome this challenge, a strategy allowing synthesis and preservation of SNPs at high mass loadings within multishell hollow metal-organic frameworks (MOFs) is demonstrated. First, alternating water-decomposable and water-stable MOFs are stacked in succession to build multilayer MOFs.

View Article and Find Full Text PDF

A quadruple bond formed between d-block or f-block atoms is an interesting research topic due to its unique nature including a supershort bonding distance and narrow energy gap between δ and δ*. Among various multiply bonded complexes, quadruply bonded Cr(ii) acetates are considered useful to control the δ-δ* energy gap by the Lewis basicity of additional ligands. However, the synthesis and preparation of the high-quality, large-sized crystals of Cr(ii) acetates coordinated with axial ligands (Cr(OAc)L) have been difficult due to their vulnerability to O, a representative oxidizing agent under aerobic conditions.

View Article and Find Full Text PDF