65,158 results match your criteria: "Plant Breeding & Acclimatization Institute[Affiliation]"

Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.

View Article and Find Full Text PDF

Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.

View Article and Find Full Text PDF

Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA.

Mol Plant Pathol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm Resources, Hebei Agricultural University, Baoding, China.

Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes.

View Article and Find Full Text PDF

Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops.

View Article and Find Full Text PDF

The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew.

Plant Biotechnol J

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.

View Article and Find Full Text PDF

Carotenoids are a diverse group of pigments imparting red, orange, and yellow hues to many horticultural plants, also enhancing their nutritional properties and health benefits. In strawberry, the genetic and molecular mechanisms regulating the natural variation of fruit carotenoid composition remain largely unexplored. In this study, we use a population segregating in yellow/white flesh to detect a major quantitative trait locus (QTL), qYellow Flesh-4B, located on chromosome 4B and accounting for 82% of total phenotypic variation.

View Article and Find Full Text PDF

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.

View Article and Find Full Text PDF

Introduction: Oxidative stress, triggered by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant defense mechanisms, is implicated in various pathological conditions. Plant-derived polysaccharides have gained significant attention as potential natural antioxidants due to their biocompatibility, biodegradability, and structural versatility.

Methods: This study focuses on the purification, structural characterization, and antioxidant activities of a novel pectin polysaccharide (HFPS) isolated from the flowers of Linn.

View Article and Find Full Text PDF

CEF642 as a Promising Biocontrol Agent for Cotton Disease Control.

J Agric Food Chem

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.

Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.

View Article and Find Full Text PDF

Deciphering the Genetic Basis of Sugar Cane ( L) Root System and Related Traits under Nitrogen Stress through the Integration of Genome-Wide Association Studies and RNA-seq.

J Agric Food Chem

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China.

Nitrogen (N) is an essential element for plant growth and development. Identifying functional gene loci associated with nitrogen absorption and utilization in sugar cane can facilitate the development of nutrient-efficient sugar cane varieties. In this study, sugar cane seedlings were subjected to normal and low nitrogen stress treatments within a hydroponic system for the identification of candidate genes related to six root-associated traits using a diversity population of 297 accessions.

View Article and Find Full Text PDF

Background: Future breeding and selection of Cannabis sativa L. for both drug production and industrial purposes require a source of germplasm with wide genetic variation, such as that found in wild relatives and progenitors of highly cultivated plants. Limited directional selection and breeding have occurred in this crop, especially informed by molecular markers.

View Article and Find Full Text PDF

Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a staple food crop globally, with origins in wild progenitors within the AA genome group of Oryza species. Oryza rufipogon and Oryza meridionalis are native to tropical Asia and Northern Australia and offer unique genetic reservoirs. Here we explored the relationships of the genomes of these wild rice species with the domesticated rice genome.

View Article and Find Full Text PDF

Genome-wide identification of HbVQ proteins and their interaction with HbWRKY14 to regulate the expression of HbSRPP in Hevea brasiliensis.

BMC Genomics

January 2025

National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China.

Background: Valine-glutamine motif-containing proteins (VQ proteins) play important roles in plant growth, development and response to stress. However, information on the VQ gene family in rubber tree (Hevea brasiliensis Muell. Arg.

View Article and Find Full Text PDF

Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.

View Article and Find Full Text PDF

Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.

View Article and Find Full Text PDF

White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci.

View Article and Find Full Text PDF

Elucidating the molecular basis of salt tolerance in potatoes through miRNA expression and phenotypic analysis.

Sci Rep

January 2025

Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.

Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis.

View Article and Find Full Text PDF

Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach.

Plant Physiol Biochem

January 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China. Electronic address:

Male sterility in peach (Prunus persica L.), characterized by the absence of fertile pollen grains in the anther, is determined by a recessive allele in homozygosis of the major gene located on chromosome 6. Developing tightly linked molecular markers can help identify appropriate peach parents or male-sterile plants for early culling in segregating progenies, thereby increasing breeding efficiency.

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum.

J Exp Bot

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.

The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C.

View Article and Find Full Text PDF