245 results match your criteria: "Pittsburgh Institute for Neurodegenerative Diseases[Affiliation]"

A role for lysosomal calcium channels in mitigating mitochondrial damage and oxidative stress.

Cell Calcium

January 2025

Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA. Electronic address:

Elevated free fatty acids and oxidative stress may function as pathogenic factors in endothelial dysfunction that is associated with various cardiovascular complications. In recent work, Feng and colleagues report that activation of a lysosomal Ca channel may be a viable option to alleviate oxidative damage by boosting lysosome biogenesis and mitophagy.

View Article and Find Full Text PDF

Axonal damage and inflammation response are biological correlates of decline in small-world values: a cohort study in autosomal dominant Alzheimer's disease.

Brain Commun

October 2024

Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands.

Article Synopsis
  • * In Alzheimer's disease, these networks become more chaotic, as indicated by a drop in the small-world coefficient, a change linked to cognitive decline throughout the disease's progression.
  • * Our study examined the relationship between 10 cerebrospinal fluid protein biomarkers and small-world coefficients in Alzheimer's mutation carriers and non-carriers, finding that certain protein abnormalities indicate early changes in grey matter networks, while markers for inflammation and axonal injury correlate with declining small-world values.
View Article and Find Full Text PDF

Infection and subsequent inflammatory processes negatively impact prognosis in individuals with traumatic brain injury (TBI). Tissue repair following TBI is tightly regulated by microglia, promoting or, importantly, preventing astrocyte-mediated repair processes, depending on the activation state of the neuroimmune cells. This study investigated the poorly understood mechanism linking proinflammatory microglia activation and astrocyte-mediated tissue repair using an in vitro mechanical injury model in mixed cortical cultures of rat neurons and glia.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists think that oxidative stress, which means damage from too many harmful substances in the body, is linked to Parkinson's disease (PD).
  • A specific gene called LRRK2 has mutations that make it more active and can increase the risk of getting PD, and this is related to more oxidative stress.
  • In studies with special lab techniques and cells from people with PD, it was found that blocking LRRK2 activity helps reduce harmful reactions, suggesting that controlling LRRK2 could help manage oxidative stress in PD.
View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is an incurable neurodegenerative disease characterized by 4-repeat (0N/4R)-Tau protein accumulation in CNS neurons. We generated transgenic zebrafish expressing human 0N/4R-Tau to investigate PSP pathophysiology. Tau zebrafish replicated multiple features of PSP, including: decreased survival; hypokinesia; impaired optokinetic responses; neurodegeneration; neuroinflammation; synapse loss; and Tau hyperphosphorylation, misfolding, mislocalization, insolubility, truncation, and oligomerization.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and more than twenty other dementias, termed tauopathies, are pathologically defined by insoluble aggregates of the microtubule-associated protein tau (MAPT). Although tau aggregation correlates with AD symptomology, the specific tau species, i.e.

View Article and Find Full Text PDF

Triosephosphate isomerase deficiency (TPI Df) is a rare multisystem disorder with severe neuromuscular symptoms which arises exclusively from mutations within the TPI1 gene. Studies of TPI Df have been limited due to the absence of mammalian disease models and difficulties obtaining patient samples. Recently, we developed a novel murine model of TPI Df which models the most common disease-causing mutation in humans, TPI1.

View Article and Find Full Text PDF

Background: Benign prostatic hyperplasia (BPH) is a condition generally associated with advanced age in men that can be accompanied by bothersome lower urinary tract symptoms (LUTS) including intermittency, weak stream, straining, urgency, frequency, and incomplete bladder voiding. Pharmacotherapies for LUTS/BPH include alpha-blockers, which relax prostatic and urethral smooth muscle and 5ɑ-reductase inhibitors such as finasteride, which can block conversion of testosterone to dihydrotestosterone thereby reducing prostate volume. Celecoxib is a cyclooxygenase-2 inhibitor that reduces inflammation and has shown some promise in reducing prostatic inflammation and alleviating LUTS for some men with histological BPH.

View Article and Find Full Text PDF

Ca/calmodulin-dependent protein kinase II α (CaMKIIα) signaling in the brain plays a critical role in regulating neuronal Ca homeostasis. Its dysfunctional activity is associated with various neurological and neurodegenerative disorders, including Parkinson's disease (PD). Using computational modeling analysis, we predicted that, two essential cysteine residues contained in CaMKIIα, Cys30 and Cys289, may undergo redox modifications impacting the proper functioning of the CaMKIIα docking site for Ca/CaM, thus impeding the formation of the CaMKIIα:Ca/CaM complex, essential for a proper modulation of CaMKIIα kinase activity.

View Article and Find Full Text PDF

Essential trace element and phosphatidylcholine remodeling: Implications for body composition and insulin resistance.

J Trace Elem Med Biol

September 2024

School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan, ROC; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC. Electronic address:

Background: Recent studies indicated that bioactive lipids of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) predict unhealthy metabolic phenotypes, but results remain inconsistent. To fill this knowledge gap, we investigated whether essential trace elements affect PC-Lyso PC remodeling pathways and the risk of insulin resistance (IR).

Methods: Anthropometric and blood biochemical data (glucose, insulin, and lipoprotein-associated phospholipase A2 (Lp-PLA2)) were obtained from 99 adults.

View Article and Find Full Text PDF

The physiological and pathophysiological roles of copper in the nervous system.

Eur J Neurosci

July 2024

Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-β-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal.

View Article and Find Full Text PDF

LRRK2 kinase inhibition protects against Parkinson's disease-associated environmental toxicants.

Neurobiol Dis

June 2024

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA. Electronic address:

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD.

View Article and Find Full Text PDF

pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain.

Cell Calcium

June 2024

Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H] (pH) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pH regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid.

View Article and Find Full Text PDF

In 2011, the UK medical research charity Cure Parkinson's set up the international Linked Clinical Trials (iLCT) committee to help expedite the clinical testing of potentially disease modifying therapies for Parkinson's disease (PD). The first committee meeting was held at the Van Andel Institute in Grand Rapids, Michigan in 2012. This group of PD experts has subsequently met annually to assess and prioritize agents that may slow the progression of this neurodegenerative condition, using a systematic approach based on preclinical, epidemiological and, where possible, clinical data.

View Article and Find Full Text PDF

Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective.

Brain Sci

January 2024

James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA.

Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models.

View Article and Find Full Text PDF

The neuron-specific K/Cl co-transporter 2, KCC2, which is critical for brain development, regulates γ-aminobutyric acid-dependent inhibitory neurotransmission. Consistent with its function, mutations in KCC2 are linked to neurodevelopmental disorders, including epilepsy, schizophrenia, and autism. KCC2 possesses 12 transmembrane spans and forms an intertwined dimer.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function.

View Article and Find Full Text PDF

Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated.

View Article and Find Full Text PDF

Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na,K-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication.

View Article and Find Full Text PDF

Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications.

J Neurosci Methods

January 2024

Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA. Electronic address:

Background: Optogenetic approaches in transparent zebrafish models have provided numerous insights into vertebrate neurobiology. The purpose of this study was to develop methods to activate light-sensitive transgene products simultaneously throughout an entire larval zebrafish.

New Method: We developed a LED illumination stand and microcontroller unit to expose zebrafish larvae reproducibly to full field illumination at defined wavelength, power, and energy.

View Article and Find Full Text PDF

Patterns in Follow-Up Imaging Usage for Pediatric Patients with Whiplash-Associated Disorder.

World Neurosurg

December 2023

Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurological Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Background: A clinical concern exists that pediatric patients with whiplash-associated disorder (WAD) might have missed structural injuries or, alternatively, subsequently develop structural injuries over time, despite initially negative imaging findings. The primary objective of this study is to assess follow-up imaging usage for pediatric patients presenting with WAD.

Methods: A retrospective review of 444 pediatric patients presenting to a level 1 pediatric trauma hospital from January 1, 2010 to December 31, 2019 was performed.

View Article and Find Full Text PDF

Measuring Constipation in a Drosophila Model of Parkinson's Disease.

J Vis Exp

September 2023

Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh;

Non-motor symptoms in Parkinson's disease (PD) are common, difficult to treat, and significantly impair quality of life. One prevalent non-motor symptom is constipation, which can precede the diagnosis of PD by years or even decades. Constipation has been underexplored in animal models of PD and lacks specific therapies.

View Article and Find Full Text PDF

Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro.

View Article and Find Full Text PDF

The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders.

View Article and Find Full Text PDF

Individuals with Parkinson's disease (PD) typically receive a diagnosis once they have developed motor symptoms, at which point there is already significant loss of substantia nigra dopamine neurons, α-synuclein accumulation in surviving neurons, and neuroinflammation. Consequently, the point of clinical presentation may be too late to initiate disease-modifying therapy. In contrast to this clinical reality, animal models often involve acute neurodegeneration and potential therapies are tested concurrently or shortly after the pathogenic insult has begun rather than later when diagnostic clinical symptoms emerge.

View Article and Find Full Text PDF