1,067 results match your criteria: "Picower Institute for Learning and Memory[Affiliation]"

RNA sensing induced by chromosome missegregation augments anti-tumor immunity.

Mol Cell

December 2024

Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan. Electronic address:

Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway.

View Article and Find Full Text PDF

Background: Fentanyl is a synthetic opioid that is widely used in anesthesiology, but its illicit use is rapidly increasing. At high doses fentanyl induces unconsciousness and muscle rigidity, the mechanisms of which are poorly understood. Since animal models are needed to study these effects, the aim of this study was to establish a rat model of fentanyl abuse and investigate the effects of repeated high-dose fentanyl injections on loss of righting reflex, heart rate, respiratory depression, muscle, and brain activity.

View Article and Find Full Text PDF

Altered gut microbiome in convalescent patients with coronavirus disease 2019.

Front Cell Infect Microbiol

December 2024

Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

Introduction: Coronavirus disease 2019 (COVID-19) alters the gut microbiome. This study aimed to assess the association between the disease severity of COVID-19 and changes in stool microbes through a seven-month follow-up of stool collection.

Methods: We conducted a multicentre, prospective longitudinal study of 58 COVID-19 patients and 116 uninfected controls.

View Article and Find Full Text PDF

Tissue-resident immune cells, such as innate lymphoid cells, mediate protective or detrimental immune responses at barrier surfaces. Upon activation by stromal or epithelial cell-derived alarmins, group 2 innate lymphoid cells (ILC2s) are a rapid source of type 2 cytokines, such as IL-5. However, due to the overlap in effector functions, it remains unresolved whether ILC2s are an essential component of the type 2 response or whether their function can be compensated by other cells, such as T cells.

View Article and Find Full Text PDF

Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells.

View Article and Find Full Text PDF

Astrocytes, which are increasingly recognized as pivotal constituents of brain circuits governing a wide range of functions, express GABA transporter 3 (Gat3), an astrocyte-specific GABA transporter responsible for maintenance of extra-synaptic GABA levels. Here, we examined the functional role of Gat3 in astrocyte-mediated modulation of neuronal activity and information encoding. First, we developed a multiplexed CRISPR construct applicable for effective genetic ablation of Gat3 in the visual cortex of adult mice.

View Article and Find Full Text PDF

Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development.

View Article and Find Full Text PDF

Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge we developed ONIX, an open-source data acquisition system with high data throughput (2 GB s) and low closed-loop latencies (<1 ms) that uses a 0.3-mm thin tether to minimize behavioral impact.

View Article and Find Full Text PDF

Proteins work together in nanostructures in many physiological contexts and disease states. We recently developed expansion revealing (ExR), which expands proteins away from each other, in order to support better labeling with antibody tags and nanoscale imaging on conventional microscopes. Here, we report multiplexed expansion revealing (multiExR), which enables high-fidelity antibody visualization of >20 proteins in the same specimen, over serial rounds of staining and imaging.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function, and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS, but no efficacious treatment has been identified to date, possibly as a consequence of poor translation from pre-clinical animal models to human.

View Article and Find Full Text PDF

SARS-CoV-2 infection elucidates features of pregnancy-specific immunity.

Cell Rep

November 2024

Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Article Synopsis
  • - Pregnancy may worsen the severity of SARS-CoV-2 and other respiratory infections, but the reasons behind this increased risk are not well understood.
  • - A study involving 226 women, including 152 pregnant and 74 non-pregnant, showed that pregnant women experience significant changes in T cell responses and immune functions after SARS-CoV-2 infection.
  • - The study found increased levels of interleukin-27 in pregnant women, which is linked to T cell exhaustion, suggesting that unique immune responses during pregnancy could make them more vulnerable to viral infections.
View Article and Find Full Text PDF

A new case of dementia is diagnosed every 3 s. Beyond age, risk prediction of dementia is challenging. There is growing evidence of underlying processes that connect aging across organ systems and may provide insight for early detection, and there is a need to identify early biomarkers at an age when action can be taken to mitigate cognitive decline.

View Article and Find Full Text PDF

Cortical norepinephrine-astrocyte signaling critically mediates learned behavior.

bioRxiv

October 2024

Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Updating behavior based on feedback from the environment is a crucial means by which organisms learn and develop optimal behavioral strategies. Norepinephrine (NE) release from the locus coeruleus (LC) has been shown to mediate learned behaviors such that in a task with graded stimulus uncertainty and performance, a high level of NE released after an unexpected outcome causes improvement in subsequent behavior. Yet, how the transient activity of LC-NE neurons, lasting tens of milliseconds, influences behavior several seconds later, is unclear.

View Article and Find Full Text PDF

The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species.

View Article and Find Full Text PDF
Article Synopsis
  • Predictive coding helps the brain make guesses about what we will hear or sense next, which involves different brain waves working together.
  • When monkeys were put to sleep with a drug, their brains stopped using these guessing signals, which changed how they reacted to unexpected sounds.
  • This study shows that being aware of things (consciousness) is linked to how well the brain predicts and processes information, and when we’re unconscious, those predictions don’t work like they should.
View Article and Find Full Text PDF
Article Synopsis
  • Astrophyses are crucial for memory processes and learning, with their activity linked to synaptic function and cognitive abilities, while other glial cells like microglia and oligodendrocytes also play significant roles in shaping these processes.
  • Recent technological advancements have improved our understanding of glial functions, highlighting the need for more research on neuron-glia interactions and their implications for brain health and neurological diseases.
View Article and Find Full Text PDF

Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive.

View Article and Find Full Text PDF

Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process.

View Article and Find Full Text PDF

Proteomics can shed light on the dynamic and multifaceted alterations in neurodegenerative disorders like Alzheimer's disease (AD). Combining radioligands measuring β-amyloid (Aβ) plaques and tau tangles with cerebrospinal fluid proteomics, we uncover molecular events mirroring different stages of AD pathology in living humans. We found 127 differentially abundant proteins (DAPs) across the AD spectrum.

View Article and Find Full Text PDF

Jellyfish comprise a diverse clade of free-swimming predators that arose prior to the Cambrian explosion. They play major roles in ocean ecosystems via a suite of complex foraging, reproductive, and defensive behaviors. These behaviors arise from decentralized, regenerative nervous systems composed of body parts that generate the appropriate part-specific behaviors autonomously following excision.

View Article and Find Full Text PDF

Prefrontal Cortex subregions provide distinct visual and behavioral feedback modulation to the Primary Visual Cortex.

bioRxiv

August 2024

The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

The mammalian Prefrontal Cortex (PFC) has been suggested to modulate sensory information processing across multiple cortical regions via long-range axonal projections. These axonal projections arise from PFC subregions with unique brain-wide connectivity and functional repertoires, which may provide the architecture for modular feedback intended to shape sensory processing. Here, we used axonal tracing, axonal and somatic 2-photon calcium imaging, and chemogenetic manipulations in mice to delineate how projections from the Anterior Cingulate Cortex (ACA) and ventrolateral Orbitofrontal Cortex (ORB) of the PFC modulate sensory processing in the primary Visual Cortex (VISp) across behavioral states.

View Article and Find Full Text PDF

Human cerebral organoids derived from induced pluripotent stem cells can recapture early developmental processes and reveal changes involving neurodevelopmental disorders. Mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene are associated with Rett syndrome, and disease severity varies depending on the location and type of mutation. Here, we focused on neuronal activity in Rett syndrome patient-derived organoids, analyzing two types of MeCP2 mutations - a missense mutation (R306C) and a truncating mutation (V247X) - using calcium imaging with three-photon microscopy.

View Article and Find Full Text PDF