146 results match your criteria: "Pharma Research Center[Affiliation]"

Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment?

Pharmacol Res

November 2023

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.

Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms.

View Article and Find Full Text PDF

A novel multi-ancestry proteome-wide Mendelian randomization study implicates extracellular proteins, tubular cells, and fibroblasts in estimated glomerular filtration rate regulation.

Kidney Int

December 2023

Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.

Estimated glomerular filtration rate (eGFR) impacts the concentration of plasma biomarkers confounding biomarker association studies of eGFR with reverse causation. To identify biomarkers causally associated with eGFR, we performed a proteome-wide Mendelian randomization study. Genetic variants nearby biomarker coding genes were tested for association with plasma concentration of 1,161 biomarkers in a multi-ancestry sample of 12,066 participants from the Prospective Urban and Rural Epidemiological (PURE) study.

View Article and Find Full Text PDF
Article Synopsis
  • - Chronic kidney disease (CKD) progression is linked to oxidative stress damaging the NO-sGC-cGMP signaling pathway, but runcaciguat is a new drug that can activate dysfunctional sGC and restore this signaling under such conditions.
  • - In studies with ZSF1 rats (a model for CKD/DKD), runcaciguat significantly reduced proteinuria and improved kidney function compared to placebo over a 12-week period with varying doses.
  • - The treatment also positively impacted metabolic markers, reducing high blood sugar levels (HbA1c), triglycerides, and cholesterol in obese ZSF1 rats, suggesting its potential as a kidney-protective treatment.
View Article and Find Full Text PDF

The 10th International Conference on cGMP 2022: recent trends in cGMP research and development-meeting report.

Naunyn Schmiedebergs Arch Pharmacol

August 2023

Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-Von-Laue-Str. 9, D-60438 , Frankfurt Am Main, Germany.

Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g.

View Article and Find Full Text PDF

Treatment effects of soluble guanylate cyclase modulation on diabetic kidney disease at single-cell resolution.

Cell Rep Med

April 2023

Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Diabetic kidney disease (DKD) is the most common cause of renal failure. Therapeutics development is hampered by our incomplete understanding of animal models on a cellular level. We show that ZSF1 rats recapitulate human DKD on a phenotypic and transcriptomic level.

View Article and Find Full Text PDF

Background: Oxidative stress associated with severe cardiopulmonary diseases leads to impairment in the nitric oxide/soluble guanylate cyclase signaling pathway, shifting native soluble guanylate cyclase toward heme-free apo-soluble guanylate cyclase. Here we describe a new inhaled soluble guanylate cyclase activator to target apo-soluble guanylate cyclase and outline its therapeutic potential.

Methods: We aimed to generate a novel soluble guanylate cyclase activator, specifically designed for local inhaled application in the lung.

View Article and Find Full Text PDF

Soluble guanylate cyclase activator BAY 54-6544 improves vasomotor function and survival in an accelerated ageing mouse model.

Aging Cell

September 2022

Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.

DNA damage is a causative factor in ageing of the vasculature and other organs. One of the most important vascular ageing features is reduced nitric oxide (NO)soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling. We hypothesized that the restoration of NO-sGC-cGMP signaling with an sGC activator (BAY 54-6544) may have beneficial effects on vascular ageing and premature death in DNA repair-defective mice undergoing accelerated ageing.

View Article and Find Full Text PDF

The sGC stimulator BAY-747 and activator runcaciguat can enhance memory in vivo via differential hippocampal plasticity mechanisms.

Sci Rep

March 2022

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.

Soluble guanylate cyclase (sGC) requires a heme-group bound in order to produce cGMP, a second messenger involved in memory formation, while heme-free sGC is inactive. Two compound classes can increase sGC activity: sGC stimulators acting on heme-bound sGC, and sGC activators acting on heme-free sGC. In this rodent study, we investigated the potential of the novel brain-penetrant sGC stimulator BAY-747 and sGC activator runcaciguat to enhance long-term memory and attenuate short-term memory deficits induced by the NOS-inhibitor L-NAME.

View Article and Find Full Text PDF

Chronic kidney diseaQueryse (CKD) is associated with oxidative stress which can interrupt the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling and decrease cyclic guanosine monophosphate (cGMP) production. Low cGMP concentrations can cause kidney damage and progression of CKD. The novel sGC activator runcaciguat targets the oxidized and heme-free form of sGC, restoring cGMP production under oxidative stress.

View Article and Find Full Text PDF

Soluble Guanylate Cyclase Stimulator Vericiguat Enhances Long-Term Memory in Rats without Altering Cerebral Blood Volume.

Biomedicines

August 2021

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.

Vascular cognitive impairment (VCI) is characterized by impairments in cerebral blood flow (CBF), endothelial function and blood-brain barrier (BBB) integrity. These processes are all physiologically regulated by the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cGMP signaling pathway. Additionally, cGMP signaling plays an important role in long-term potentiation (LTP) underlying memory formation.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder, affecting one in 3500 to 5000 boys worldwide. The NO-sGC-cGMP pathway plays an important role in skeletal muscle function, primarily by improving blood flow and oxygen supply to the muscles during exercise. In fact, PDE5 inhibitors have previously been investigated as a potential therapy for DMD, however, a large-scale Phase III clinical trial did not meet its primary endpoint.

View Article and Find Full Text PDF

Background And Purpose: Generation of cGMP via NO-sensitive soluble guanylyl cyclase (sGC) has been implicated in the regulation of renal functions. Chronic kidney disease (CKD) is associated with decreased NO bioavailability, increased oxidative stress and oxidation of sGC to its haem-free form, apo-sGC. Apo-sGC cannot be activated by NO, resulting in impaired cGMP signalling that is associated with chronic kidney disease progression.

View Article and Find Full Text PDF

Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli.

View Article and Find Full Text PDF

Allosteric targeting of the FFA2 receptor (GPR43) restores responsiveness of desensitized human neutrophils.

J Leukoc Biol

April 2021

Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.

The G protein-coupled free fatty acid receptor 2 (FFA2R) is highly expressed on neutrophils and was previously described to regulate neutrophil activation. Allosteric targeting of G protein-coupled receptors (GPCRs) is increasingly explored to create distinct pharmacology compared to endogenous, orthosteric ligands. The consequence of allosteric versus orthosteric FFA2R activation for neutrophil response, however, is currently largely elusive.

View Article and Find Full Text PDF

Introduction: Previous research in the field of cardiovascular diseases suggests a relaxing effect of testosterone (T) on smooth muscle cells. Therefore, it was hypothesized that T could play a significant role in erection development.

Aim: To investigate the relaxing effect of T and other molecules of the T signaling pathway on human corpus cavernosum (HCC) tissue.

View Article and Find Full Text PDF

Soluble Guanylate Cyclase Agonists Induce Bronchodilation in Human Small Airways.

Am J Respir Cell Mol Biol

January 2020

Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey.

The soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate signaling pathway evokes vascular smooth muscle relaxation; whether this pathway mediates airway smooth muscle relaxation remains controversial. We posit that sGC activators are equi-effective as β-agonists in reversing contractile agonist-induced airway smooth muscle shortening. To provide clarity, we tested the efficacy of sGC stimulator and activator drugs, BAY 41-2272 and BAY 60-2270, respectively, in reversing bronchoconstriction of human small airways using human precision-cut lung slices (hPCLS).

View Article and Find Full Text PDF

When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications.

View Article and Find Full Text PDF

Heparanase (HPSE) is an endo-β-D-glucuronidase that cleaves heparan sulphate (HS) chains of proteoglycans (HSPGs). Besides a remodelling of the extracellular matrix, HPSE increases the bioavailability of pro-angiogenic mediators, such as HS-associated vascular endothelial growth factor (VEGF), thereby contributing to metastatic niche formation. Notably, HPSE also induces release of VEGF from tumour cells independent of its enzymatic activity, but the underlying molecular mechanisms remain unresolved.

View Article and Find Full Text PDF

Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes.

View Article and Find Full Text PDF

Nitric oxide (NO) signaling represents one of the major regulatory pathways for cardiovascular function. After the discovery of NO, awarded with the Nobel Prize in 1998, this signaling cascade was stepwise clarified. We now have a good understanding of NO production and NO downstream targets such as the soluble guanylyl cyclases (sGCs) which catalyze cGMP production.

View Article and Find Full Text PDF

Individual dose adjustment of riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension.

Respir Med

August 2017

University of Giessen and Marburg Lung Center, Giessen, Germany, Member of the German Center of Lung Research (DZL); Department of Medicine, Imperial College London, London, UK.

Riociguat is a soluble guanylate cyclase stimulator that has been approved for the treatment of pulmonary arterial hypertension and inoperable chronic thromboembolic pulmonary hypertension or persistent/recurrent pulmonary hypertension following pulmonary endarterectomy. Riociguat is administered using an 8-week individual dose-adjustment scheme whereby a patient initially receives riociguat 1.0 mg three times daily (tid), and the dose is then increased every 2 weeks in the absence of hypotension, indicated by systolic blood pressure measurements and symptoms, up to a maximum dose of 2.

View Article and Find Full Text PDF

Female patients requiring treatment for pulmonary arterial hypertension (PAH) are advised to avoid pregnancy because of the high associated mortality rate. Oral contraception is one of the main methods of preventing pregnancy in this context, mandating pharmacokinetic and safety studies for new agents in this setting. Riociguat is a soluble guanylate cyclase stimulator approved for treatment of PAH and inoperable and persistent or recurrent chronic thromboembolic pulmonary hypertension.

View Article and Find Full Text PDF

This analysis aimed to characterize the pharmacokinetics (PK) and PK/pharmacodynamic (PK/PD) relationship of riociguat and its metabolite M1 in patients with chronic thromboembolic pulmonary hypertension (CTEPH) or pulmonary arterial hypertension (PAH). Blood samples were collected in two phase 3 studies-PATENT-1 (Pulmonary Arterial Hypertension Soluble Guanylate Cyclase-Stimulator Trial 1; 12 weeks; PAH) and CHEST-1 (Chronic Thromboembolic Pulmonary Hypertension Soluble Guanylate Cyclase-Stimulator Trial 1; 16 weeks; CTEPH)-and long-term extensions. Patients were initially randomized to receive placebo or riociguat, and they received riociguat in the extensions.

View Article and Find Full Text PDF