135 results match your criteria: "Peter-Debye-Institute for Soft Matter Physics[Affiliation]"

SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.

View Article and Find Full Text PDF

Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines.

View Article and Find Full Text PDF

Large stochastic population abundance fluctuations are ubiquitous across the tree of life, impacting the predictability and outcomes of population dynamics. It is generally thought that abundance fluctuations with a Taylor's law exponent of two do not strongly impact evolution. However, we argue that such abundance fluctuations can lead to substantial genotype frequency fluctuations if different genotypes in a population experience these fluctuations asynchronously.

View Article and Find Full Text PDF
Article Synopsis
  • DNA double-strand break (DSB) repair starts with DNA end resection, where the 5'-ended strands at break sites are carefully degraded, a process aided by the BRCA1-BARD1 protein complex.
  • BRCA1-BARD1 not only promotes this resection process by activating specific nucleases (EXO1 and DNA2) but also works together with other proteins (like MRE11-RAD50-NBS1 and phosphorylated CtIP) to form the BRCA1-C complex, enhancing repair efficiency.
  • Interestingly, while BRCA1-BARD1 supports resection, it also plays a protective role during DNA replication stress by working with the
View Article and Find Full Text PDF

Background: Colorectal cancer is the third most common tumour entity in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. For instance, biomechanical tumour properties measured by magnetic resonance elastography (MRE) could be implemented as such a diagnostic tool.

View Article and Find Full Text PDF

The extracellular environment plays a crucial role in many physiological and pathological processes involving cell motility, such as metastatic invasion in cancer development, by heavily impacting the migration strategies adopted by the cells. The study of how mechanical constraints affect the dynamics of cell migration may be relevant to gain more insight into such processes, and it may prove to be a powerful tool in the hands of biologists. In this chapter, we describe the methods used to investigate the ability of neoplastic cells to migrate through narrowing, rigid microstructures upon chemoattractant stimulation.

View Article and Find Full Text PDF

The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Sensitivity of magnetic resonance elastography to extracellular matrix and cell motility in human prostate cancer cell line-derived xenograft models.

Biomater Adv

July 2024

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address:

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system.

View Article and Find Full Text PDF

Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM.

View Article and Find Full Text PDF

Mechanism of DNA unwinding by MCM8-9 in complex with HROB.

Nat Commun

April 2024

Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland.

HROB promotes the MCM8-9 helicase in DNA damage response. To understand how HROB activates MCM8-9, we defined their interaction interface. We showed that HROB makes important yet transient contacts with both MCM8 and MCM9, and binds the MCM8-9 heterodimer with the highest affinity.

View Article and Find Full Text PDF

Genetic drift in infectious disease transmission results from randomness of transmission and host recovery or death. The strength of genetic drift for SARS-CoV-2 transmission is expected to be high due to high levels of superspreading, and this is expected to substantially impact disease epidemiology and evolution. However, we don't yet have an understanding of how genetic drift changes over time or across locations.

View Article and Find Full Text PDF

Large stochastic population abundance fluctuations are ubiquitous across the tree of life, impacting the predictability of population dynamics and influencing eco-evolutionary outcomes. It has generally been thought that these large abundance fluctuations do not strongly impact evolution, as the relative frequencies of alleles in the population will be unaffected if the abundance of all alleles fluctuate in unison. However, we argue that large abundance fluctuations can lead to significant genotype frequency fluctuations if different genotypes within a population experience these fluctuations asynchronously.

View Article and Find Full Text PDF

Magnetic tweezers in cell mechanics.

Methods Enzymol

March 2024

Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany. Electronic address:

The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined.

View Article and Find Full Text PDF

Tipping points emerge from weak mutualism in metacommunities.

PLoS Comput Biol

March 2024

Department of Physics, University of California, Berkeley, California, United States of America.

The coexistence of obligate mutualists is often precariously close to tipping points where small environmental changes can drive catastrophic shifts in species composition. For example, microbial ecosystems can collapse by the decline of a strain that provides an essential resource on which other strains cross-feed. Here, we show that tipping points, ecosystem collapse, bistability and hysteresis arise even with very weak (non-obligate) mutualism provided the population is spatially structured.

View Article and Find Full Text PDF

Heavy Metal Stabilization of DNA Origami Nanostructures.

Nano Lett

February 2024

Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany.

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl].

View Article and Find Full Text PDF

The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus.

View Article and Find Full Text PDF

Rediversification following ecotype isolation reveals hidden adaptive potential.

Curr Biol

February 2024

Department of Physics, University of California, Berkeley, Berkeley, CA, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA; Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany. Electronic address:

Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about whether communities can regenerate ecological diversity following ecotype removal or extinction and how the rediversified communities would compare to the original ones. Here, we show that simple two-ecotype communities from the E.

View Article and Find Full Text PDF

Effect of non-linear strain stiffening in eDAH and unjamming.

Soft Matter

February 2024

Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.

In cell clusters, the prominent factors at play encompass contractility-based enhanced tissue surface tension and cell unjamming transition. The former effect pertains to the boundary effect, while the latter constitutes a bulk effect. Both effects share outcomes of inducing significant elongation in cells.

View Article and Find Full Text PDF

Harnessing synthetic active particles for physical reservoir computing.

Nat Commun

January 2024

Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany.

The processing of information is an indispensable property of living systems realized by networks of active processes with enormous complexity. They have inspired many variants of modern machine learning, one of them being reservoir computing, in which stimulating a network of nodes with fading memory enables computations and complex predictions. Reservoirs are implemented on computer hardware, but also on unconventional physical substrates such as mechanical oscillators, spins, or bacteria often summarized as physical reservoir computing.

View Article and Find Full Text PDF

Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders.

View Article and Find Full Text PDF

Glycosylation is a prominent posttranslational modification, and alterations in glycosylation are a hallmark of cancer. Glycan-binding receptors, primarily expressed on immune cells, play a central role in glycan recognition and immune response. Here, we used the recombinant C-type glycan-binding receptors CD301, Langerin, SRCL, LSECtin, and DC-SIGNR to recognize their ligands on tissue microarrays (TMA) of a large cohort (n = 1859) of invasive breast cancer of different histopathological types to systematically determine the relevance of altered glycosylation in breast cancer.

View Article and Find Full Text PDF

Cleavage of bacteriophage DNA by the Type III restriction-modification enzymes requires long-range interaction between DNA sites. This is facilitated by one-dimensional diffusion ('DNA sliding') initiated by ATP hydrolysis catalyzed by a superfamily 2 helicase-like ATPase. Here we combined ultrafast twist measurements based on plasmonic DNA origami nano-rotors with stopped-flow fluorescence and gel-based assays to examine the role(s) of ATP hydrolysis.

View Article and Find Full Text PDF

Accumulation and Stretching of DNA Molecules in Temperature-Induced Concentration Gradients.

J Phys Chem B

December 2023

Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany.

Temperature fields provide a noninvasive approach for manipulating individual macromolecules in solution. Utilizing thermophoresis and other secondary effects resulting from the inhomogeneous distribution of crowding agents, one may gain valuable insights into the interactions of molecular mixtures. In this report, we examine the steady-state concentration distribution and dynamics of DNA molecules in a poly(ethylene glycol) (PEG)/water solution when exposed to localized temperature gradients generated by optical heating of a thin chrome layer at a liquid-solid boundary.

View Article and Find Full Text PDF

Self-Assembly of Designed Peptides with DNA to Accelerate the DNA Strand Displacement Process for Dynamic Regulation of DNAzymes.

ACS Nano

December 2023

State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Toehold-mediated DNA strand displacement (TMSD) is a powerful tool for controlling DNA-based molecular reactions and devices. However, the slow kinetics of TMSD reactions often limit their efficiency and practical applications. Inspired by the chemical structures of natural DNA-operating enzymes (.

View Article and Find Full Text PDF