135 results match your criteria: "Peter-Debye-Institute for Soft Matter Physics[Affiliation]"
Microbiol Mol Biol Rev
January 2025
General Microbiology, Technische Universität Dresden, Dresden, Germany.
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.
View Article and Find Full Text PDFNat Metab
January 2025
Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
Department of Physics, University of California Berkeley, Berkeley, CA, USA.
Large stochastic population abundance fluctuations are ubiquitous across the tree of life, impacting the predictability and outcomes of population dynamics. It is generally thought that abundance fluctuations with a Taylor's law exponent of two do not strongly impact evolution. However, we argue that such abundance fluctuations can lead to substantial genotype frequency fluctuations if different genotypes in a population experience these fluctuations asynchronously.
View Article and Find Full Text PDFNature
October 2024
Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.
J Transl Med
August 2024
Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
Background: Colorectal cancer is the third most common tumour entity in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. For instance, biomechanical tumour properties measured by magnetic resonance elastography (MRE) could be implemented as such a diagnostic tool.
View Article and Find Full Text PDFMethods Mol Biol
August 2024
Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig, Germany.
The extracellular environment plays a crucial role in many physiological and pathological processes involving cell motility, such as metastatic invasion in cancer development, by heavily impacting the migration strategies adopted by the cells. The study of how mechanical constraints affect the dynamics of cell migration may be relevant to gain more insight into such processes, and it may prove to be a powerful tool in the hands of biologists. In this chapter, we describe the methods used to investigate the ability of neoplastic cells to migrate through narrowing, rigid microstructures upon chemoattractant stimulation.
View Article and Find Full Text PDFPLoS Comput Biol
August 2024
Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany.
The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands.
Biomater Adv
July 2024
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address:
Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system.
View Article and Find Full Text PDFAPL Bioeng
June 2024
Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM.
View Article and Find Full Text PDFNat Commun
April 2024
Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland.
HROB promotes the MCM8-9 helicase in DNA damage response. To understand how HROB activates MCM8-9, we defined their interaction interface. We showed that HROB makes important yet transient contacts with both MCM8 and MCM9, and binds the MCM8-9 heterodimer with the highest affinity.
View Article and Find Full Text PDFPLoS Pathog
April 2024
Department of Physics, University of California, Berkeley, California, United States of America.
Genetic drift in infectious disease transmission results from randomness of transmission and host recovery or death. The strength of genetic drift for SARS-CoV-2 transmission is expected to be high due to high levels of superspreading, and this is expected to substantially impact disease epidemiology and evolution. However, we don't yet have an understanding of how genetic drift changes over time or across locations.
View Article and Find Full Text PDFbioRxiv
August 2024
Department of Physics, University of California Berkeley, Berkeley, CA, USA.
Large stochastic population abundance fluctuations are ubiquitous across the tree of life, impacting the predictability of population dynamics and influencing eco-evolutionary outcomes. It has generally been thought that these large abundance fluctuations do not strongly impact evolution, as the relative frequencies of alleles in the population will be unaffected if the abundance of all alleles fluctuate in unison. However, we argue that large abundance fluctuations can lead to significant genotype frequency fluctuations if different genotypes within a population experience these fluctuations asynchronously.
View Article and Find Full Text PDFMethods Enzymol
March 2024
Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany. Electronic address:
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined.
View Article and Find Full Text PDFPLoS Comput Biol
March 2024
Department of Physics, University of California, Berkeley, California, United States of America.
The coexistence of obligate mutualists is often precariously close to tipping points where small environmental changes can drive catastrophic shifts in species composition. For example, microbial ecosystems can collapse by the decline of a strain that provides an essential resource on which other strains cross-feed. Here, we show that tipping points, ecosystem collapse, bistability and hysteresis arise even with very weak (non-obligate) mutualism provided the population is spatially structured.
View Article and Find Full Text PDFNano Lett
February 2024
Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany.
DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl].
View Article and Find Full Text PDFNucleic Acids Res
April 2024
Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany.
The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus.
View Article and Find Full Text PDFCurr Biol
February 2024
Department of Physics, University of California, Berkeley, Berkeley, CA, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA; Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany. Electronic address:
Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about whether communities can regenerate ecological diversity following ecotype removal or extinction and how the rediversified communities would compare to the original ones. Here, we show that simple two-ecotype communities from the E.
View Article and Find Full Text PDFSoft Matter
February 2024
Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
In cell clusters, the prominent factors at play encompass contractility-based enhanced tissue surface tension and cell unjamming transition. The former effect pertains to the boundary effect, while the latter constitutes a bulk effect. Both effects share outcomes of inducing significant elongation in cells.
View Article and Find Full Text PDFNat Commun
January 2024
Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany.
The processing of information is an indispensable property of living systems realized by networks of active processes with enormous complexity. They have inspired many variants of modern machine learning, one of them being reservoir computing, in which stimulating a network of nodes with fading memory enables computations and complex predictions. Reservoirs are implemented on computer hardware, but also on unconventional physical substrates such as mechanical oscillators, spins, or bacteria often summarized as physical reservoir computing.
View Article and Find Full Text PDFNucleic Acids Res
April 2024
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania.
Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders.
View Article and Find Full Text PDFGlycobiology
April 2024
Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
Glycosylation is a prominent posttranslational modification, and alterations in glycosylation are a hallmark of cancer. Glycan-binding receptors, primarily expressed on immune cells, play a central role in glycan recognition and immune response. Here, we used the recombinant C-type glycan-binding receptors CD301, Langerin, SRCL, LSECtin, and DC-SIGNR to recognize their ligands on tissue microarrays (TMA) of a large cohort (n = 1859) of invasive breast cancer of different histopathological types to systematically determine the relevance of altered glycosylation in breast cancer.
View Article and Find Full Text PDFNat Chem Biol
June 2024
DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK.
Cleavage of bacteriophage DNA by the Type III restriction-modification enzymes requires long-range interaction between DNA sites. This is facilitated by one-dimensional diffusion ('DNA sliding') initiated by ATP hydrolysis catalyzed by a superfamily 2 helicase-like ATPase. Here we combined ultrafast twist measurements based on plasmonic DNA origami nano-rotors with stopped-flow fluorescence and gel-based assays to examine the role(s) of ATP hydrolysis.
View Article and Find Full Text PDFJ Phys Chem B
December 2023
Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany.
Temperature fields provide a noninvasive approach for manipulating individual macromolecules in solution. Utilizing thermophoresis and other secondary effects resulting from the inhomogeneous distribution of crowding agents, one may gain valuable insights into the interactions of molecular mixtures. In this report, we examine the steady-state concentration distribution and dynamics of DNA molecules in a poly(ethylene glycol) (PEG)/water solution when exposed to localized temperature gradients generated by optical heating of a thin chrome layer at a liquid-solid boundary.
View Article and Find Full Text PDFACS Nano
December 2023
State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Toehold-mediated DNA strand displacement (TMSD) is a powerful tool for controlling DNA-based molecular reactions and devices. However, the slow kinetics of TMSD reactions often limit their efficiency and practical applications. Inspired by the chemical structures of natural DNA-operating enzymes (.
View Article and Find Full Text PDF