126 results match your criteria: "Peter Grünberg Institute (PGI 7 & 10)[Affiliation]"

Metal-halide perovskites (MHPs) have gained substantial interest in the energy and optoelectronics field. MHPs in nanostructure forms, such as nanocrystals and nanowires (NWs), have further expanded the horizons for perovskite nanodevices in geometry and properties. A partial anion exchange within the nanostructure, creating axial heterojunctions, has significantly augmented the potential applications.

View Article and Find Full Text PDF

Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment.

View Article and Find Full Text PDF

Self-rectifying memristive devices have emerged as promising contenders for low-power in-memory computing, presenting numerous advantages. However, characterizing the functional behavior of passive crossbar arrays incorporating these devices remains challenging due to sophisticated parasitic currents stemming from rich memristive dynamic behavior. Conventional methods using read margin assessments to evaluate functional behavior in passive crossbars are hindered by the voltage divider effect from the pull-up resistor.

View Article and Find Full Text PDF

Quantum size effects in ultra-thin YBaCuO films.

Sci Rep

September 2024

Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany.

The d-wave symmetry of the order parameter with zero energy gap in nodal directions stands in the way of using high-temperature superconductors for quantum applications. We investigate the symmetry of the order parameter in ultra-thin YBaCuO (YBCO) films by measuring the electrical transport properties of nanowires aligned at different angles relative to the main crystallographic axes. The anisotropy of the nanowire critical current in the nodal and antinodal directions reduces with the decrease in the film thickness.

View Article and Find Full Text PDF

Role of strain softening and viscoelastic memory for the rolling friction of two tire tread compounds.

J Chem Phys

August 2024

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China.

Rolling friction is of great importance for many applications, such as tires and conveyor belts. We study the rolling friction for hard cylinders rolling on flat rubber sheets. The rolling friction depends on the number of rolling cycles, the rolling speed, and the temperature.

View Article and Find Full Text PDF

Impedance-matched coplanar-waveguide metal-powder low-pass filters for cryogenic applications.

Rev Sci Instrum

July 2024

Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.

We developed impedance-matched metal-powder low-pass filters based on coplanar waveguide design and characterized them at room temperature and 77.4 K. The coplanar waveguide metal-powder (CPW-MP) filters have a return loss better than 9.

View Article and Find Full Text PDF

CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely GeSn alloys, are investigated. Layers featuring Sn contents up to 14 at.

View Article and Find Full Text PDF

In-Plane Anisotropy of Electrical Transport in YTbBaCuO Films.

Materials (Basel)

January 2024

Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.

We fabricated high-quality c-axis-oriented epitaxial YBaCuO films with 15% of the yttrium atoms replaced by terbium (YTBCO) and studied their electrical properties. The Tb substitution reduced the charge carrier density, resulting in increased resistivity and decreased critical current density compared to pure YBaCuO films. The electrical properties of the YTBCO films showed an in-plane anisotropy in both the superconducting and normal states that, together with the XRD data, provided evidence for, at least, a partially twin-free film.

View Article and Find Full Text PDF

Write-variability and resistance instability are major reliability concerns impeding implementation of oxide-based memristive devices in neuromorphic systems. The root cause of the reliability issues is the stochastic nature of conductive filament formation and dissolution, whose impact is particularly critical in the high resistive state (HRS). Optimizing the filament stability requires mitigating diffusive processes within the oxide, but these are unaffected by conventional electrode scaling.

View Article and Find Full Text PDF

Interfacial Thermal Resistive Switching in (Pt,Cr)/SrTiO Devices.

ACS Appl Mater Interfaces

March 2024

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

The operation of oxide-based memristive devices relies on the fast accumulation and depletion of oxygen vacancies by an electric field close to the metal-oxide interface. Here, we show that the reversible change of the local concentration of oxygen vacancies at this interface also produces a change in the thermal boundary resistance (TBR), i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Calix[]arenes with a polyphenolic lower rim can form nano-sized coordination clusters with lanthanide ions, but their capacity is limited compared to smaller ligands.
  • Researchers used an "anion template strategy" and "templating ligands" to create new LnIII18 coordination clusters, which are the largest made with calix[]arenes, featuring lanthanides like La, Nd, and Gd.
  • These clusters contain a unique internal structure with chlorides and μ-OH ligands and large cylindrical channels, which may have applications in creating magnetic refrigerants due to their significant magnetic properties and high entropy.
View Article and Find Full Text PDF

Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid-gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides.

View Article and Find Full Text PDF

The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet MnGe hosts gapped topological Dirac magnons.

View Article and Find Full Text PDF

Metallic surfaces with unidirectional anisotropy are often used to guide the self-assembly of organic molecules along a particular direction. Such supports thus offer an avenue for the fabrication of hybrid organic-metal interfaces with tailored morphology and precise elemental composition. Nonetheless, such control often comes at the expense of detrimental interfacial interactions that might quench the pristine properties of molecules.

View Article and Find Full Text PDF

The magnetic structure of chromium arsenide CrAs is studied with neutron powder diffraction at ambient pressure in the temperature range 1.5-300 K as well as with neutron single-crystal diffraction at 2 K and 0.12 GPa.

View Article and Find Full Text PDF

Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character.

View Article and Find Full Text PDF

Artificial neurons and synapses are considered essential for the progress of the future brain-inspired computing, based on beyond von Neumann architectures. Here, a discussion on the common electrochemical fundamentals of biological and artificial cells is provided, focusing on their similarities with the redox-based memristive devices. The driving forces behind the functionalities and the ways to control them by an electrochemical-materials approach are presented.

View Article and Find Full Text PDF

Particle-hole symmetry plays an important role in the characterization of topological phases in solid-state systems. It is found, for example, in free-fermion systems at half filling and it is closely related to the notion of antiparticles in relativistic field theories. In the low-energy limit, graphene is a prime example of a gapless particle-hole symmetric system described by an effective Dirac equation in which topological phases can be understood by studying ways to open a gap by preserving (or breaking) symmetries.

View Article and Find Full Text PDF

Coherent noise enables probabilistic sequence replay in spiking neuronal networks.

PLoS Comput Biol

May 2023

Institute of Neuroscience and Medicine (INM-6), & Institute for Advanced Simulation (IAS-6), & JARA BRAIN Institute Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.

Animals rely on different decision strategies when faced with ambiguous or uncertain cues. Depending on the context, decisions may be biased towards events that were most frequently experienced in the past, or be more explorative. A particular type of decision making central to cognition is sequential memory recall in response to ambiguous cues.

View Article and Find Full Text PDF

Review on Resistive Switching Devices Based on Multiferroic BiFeO.

Nanomaterials (Basel)

April 2023

Institute for Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, 07743 Jena, Germany.

This review provides a comprehensive examination of the state-of-the-art research on resistive switching (RS) in BiFeO (BFO)-based memristive devices. By exploring possible fabrication techniques for preparing the functional BFO layers in memristive devices, the constructed lattice systems and corresponding crystal types responsible for RS behaviors in BFO-based memristive devices are analyzed. The physical mechanisms underlying RS in BFO-based memristive devices, i.

View Article and Find Full Text PDF

The counter-electrode (CE) material in electrochemical metallization memory (ECM) cells plays a crucial role in the switching process by affecting the reactions at the CE/electrolyte interface. This is due to the different electrocatalytic activity of the CE material towards reduction-oxidation reactions, which determines the metal ion concentration in the electrolyte and ultimately impacts the switching kinetics. In this study, the focus is laid on Pt, TiN, and W, which are relevant in standard chip technology.

View Article and Find Full Text PDF

Phonon-mediated room-temperature quantum Hall transport in graphene.

Nat Commun

January 2023

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.

The quantum Hall (QH) effect in two-dimensional electron systems (2DESs) is conventionally observed at liquid-helium temperatures, where lattice vibrations are strongly suppressed and bulk carrier scattering is dominated by disorder. However, due to large Landau level (LL) separation (~2000 K at B = 30 T), graphene can support the QH effect up to room temperature (RT), concomitant with a non-negligible population of acoustic phonons with a wave-vector commensurate to the inverse electronic magnetic length. Here, we demonstrate that graphene encapsulated in hexagonal boron nitride (hBN) realizes a novel transport regime, where dissipation in the QH phase is governed predominantly by electron-phonon scattering.

View Article and Find Full Text PDF

Experimental and Modeling Study of Metal-Insulator Interfaces to Control the Electronic Transport in Single Nanowire Memristive Devices.

ACS Appl Mater Interfaces

November 2022

Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129Torino, Italy.

Memristive devices relying on redox-based resistive switching mechanisms represent promising candidates for the development of novel computing paradigms beyond von Neumann architecture. Recent advancements in understanding physicochemical phenomena underlying resistive switching have shed new light on the importance of an appropriate selection of material properties required to optimize the performance of devices. However, despite great attention has been devoted to unveiling the role of doping concentration, impurity type, adsorbed moisture, and catalytic activity at the interfaces, specific studies concerning the effect of the counter electrode in regulating the electronic flow in memristive cells are scarce.

View Article and Find Full Text PDF

Metal-free chemical vapor deposition (CVD) of single-layer graphene (SLG) on c-plane sapphire has recently been demonstrated for wafer diameters of up to 300 mm, and the high quality of the SLG layers is generally characterized by integral methods. By applying a comprehensive analysis approach, distinct interactions at the graphene-sapphire interface and local variations caused by the substrate topography are revealed. Regions near the sapphire step edges show tiny wrinkles with a height of about 0.

View Article and Find Full Text PDF

Learning and replaying spatiotemporal sequences: A replication study.

Front Integr Neurosci

October 2022

Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA-Institute Brain Structure-Function Relationship (JBI-1/INM-10), Research Centre Jülich, Jülich, Germany.

Learning and replaying spatiotemporal sequences are fundamental computations performed by the brain and specifically the neocortex. These features are critical for a wide variety of cognitive functions, including sensory perception and the execution of motor and language skills. Although several computational models demonstrate this capability, many are either hard to reconcile with biological findings or have limited functionality.

View Article and Find Full Text PDF