15 results match your criteria: "Pakistan Institute of Engineering and Technology[Affiliation]"

Eco-friendly waste utilization helps in the development of sustainable infrastructures. Recently, researchers have focused on the production of road infrastructures using the circular economy concept of human safety. The objective of this study is to investigate and explore the utilization of optimum polymer waste content for the development of polymer-modified asphalt mixtures using response surface methodology (RSM).

View Article and Find Full Text PDF

At present, low tensile mechanical properties and a high carbon footprint are considered the chief drawbacks of plain cement concrete (PCC). At the same time, the combination of supplementary cementitious material (SCM) and reinforcement of fiber filaments is an innovative and eco-friendly approach to overcome the tensile and environmental drawbacks of plain cement concrete (PCC). The combined and individual effect of fly ash (FA) and Alkali resistance glass fiber (ARGF) with several contents on the mechanical characteristics of M20 grade plain cement concrete was investigated in this study.

View Article and Find Full Text PDF

Medical imaging can help doctors in better diagnosis of several conditions. During the present COVID-19 pandemic, timely detection of novel coronavirus is crucial, which can help in curing the disease at an early stage. Image enhancement techniques can improve the visual appearance of COVID-19 CT scans and speed-up the process of diagnosis.

View Article and Find Full Text PDF

Water is one of the necessary ingredients for construction materials. Billions of gallons of clean water are wasted during the development of fired clay bricks. Similarly, the waste of clean water is a global issue.

View Article and Find Full Text PDF

Road safety has become a serious issue in both developed and developing countries, costing billions of dollars every year. Road accidents at nighttime especially in low illumination situations are common and severe and have gained a lot of attention. To improve visibility and avoid traffic accidents, a series of efforts have been made but the existing mechanism is facing continuous challenges and highlighting a need for smart highways with high efficiency, road safety, and strength.

View Article and Find Full Text PDF

Heat treatment is often required for ultra-high-performance concrete (UHPC) to achieve high strength. To broad its use in construction, the effect of different curing conditions on the properties of UHPC has been developed for many years. The experimental investigation of large scale ultra-high-performance fibre reinforced concrete (UHPFRC) beams is limited.

View Article and Find Full Text PDF

Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance.

View Article and Find Full Text PDF

In this research, the aim relates to the material characterization of high-energy lithium-ion pouch cells. The development of appropriate model cell behavior is intended to simulate two scenarios: the first is mechanical deformation during a crash and the second is an internal short circuit in lithium-ion cells during the actual effect scenarios. The punch test has been used as a benchmark to analyze the effects of different state of charge conditions on high-energy lithium-ion battery cells.

View Article and Find Full Text PDF

Limited research work is available in the literature for the theoretical estimates of axial compressive strength of columns reinforced with fiber reinforced polymer (FRP) rebars. In the present work, an experimental database of 278 FRP-reinforced concrete (RC) compression members was established from the literature to recommend an empirical model that can accurately predict the axial strength (AS) of GFRP-RC specimens. An initial assessment of 13 different previously anticipated empirical models was executed to achieve a general form of the AS model.

View Article and Find Full Text PDF

Recycling and Utilization of Polymers for Road Construction Projects: An Application of the Circular Economy Concept.

Polymers (Basel)

April 2021

National Center for Environmental Technology (NCET), Life Science and Environment Research Institute (LSERI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.

Numerous environmental issues arise as a result of a linear economy strategy: reserves become scarce and end up in landfills and as greenhouse gases. Utilizing waste as a resource or shifting towards a circular economy are among the effective strategies for addressing these issues. To track this shift, appropriate measures that concentrate on sustainable development while taking practical contexts into consideration are required.

View Article and Find Full Text PDF

Disaster is a state of serious disruptions in the functionality of any society or county. Disasters pose serious economic or environmental impacts that surpass the capacity of the affected country or society to compete with the use of their assets. Recently, Pakistan significantly prone to health disasters due to COVID-19 among developing South Asian countries.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) was first reported in China (Wuhan) at the end of 2019. It has rapidly spread over 216 countries, including the USA, UK, Europe, Russia, and many Asian countries. It has affected more than 4.

View Article and Find Full Text PDF

For the efficient and durable design of concrete, the role of fiber-reinforcements with mineral admixtures needs to be properly investigated considering various factors such as contents of fibers and potential supplementary cementitious material. Interactive effects of fibers and mineral admixtures are also needed to be appropriately studied. In this paper, properties of concrete were investigated with individual and combined incorporation of steel fiber (SF) and micro-silica (MS).

View Article and Find Full Text PDF

Green revolution and high carbon footprint concepts have attracted the development of a green and sustainable environment. This work endeavors to investigate the behavior of recycled aggregate geopolymer concrete (RAGC) developed with four different types of effluents to develop sustainability in the construction industry and to produce an eco-friendly environment. Each of the types of effluents was used by completely replacing the freshwater in RAGC to examine its influence on compressive strength (CS), chloride ion migration (CIM), split tensile strength (STS), and resistance to the sulfuric acid attack of RAGC at various testing ages.

View Article and Find Full Text PDF

Portland cement concrete is fragile in tension and it has numerous negative impacts on the environment. To deal with these issues, both fiber reinforcement and recycled materials can be utilized to manufacture sustainable and ductile concrete. In this study, the synergistic effects of high-performance mineral admixture silica fume and glass fiber reinforcement were investigated on the hardened properties of RC.

View Article and Find Full Text PDF