54 results match your criteria: "Pablo de Olavide University of Seville.[Affiliation]"

Roles for the long non-coding RNA / in pancreatic beta cell function.

iScience

January 2025

Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.

Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.

View Article and Find Full Text PDF

Background: The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival.

Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells.

View Article and Find Full Text PDF
Article Synopsis
  • The development of effective therapies for type 1 diabetes (T1D) is challenged by the immune system's destruction of insulin-producing beta cells, making islet transplantation difficult without harsh immunosuppressants.
  • Researchers discovered that activating the nuclear receptor LRH-1/NR5A2 could potentially reverse high blood sugar levels in mouse models of T1D by modifying the immune response rather than suppressing it.
  • In experiments where human islets were transplanted into diabetic mice and treated with an LRH-1/NR5A2 agonist (BL001), results showed improved blood glucose levels and better survival of the islets compared to control mice, indicating that BL001 enhances the function and longevity of transplanted human
View Article and Find Full Text PDF

BCAS1 defines a heterogeneous cell population in diffuse gliomas.

Oncotarget

January 2024

Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, University of Valencia-CIBERNED, Valencia, Spain.

Oligodendrocyte precursor markers have become of great interest to identify new diagnostic and therapeutic targets for diffuse gliomas, since state-of-the-art studies point towards immature oligodendrocytes as a possible source of gliomagenesis. Brain enriched myelin associated protein 1 (BCAS1) is a novel marker of immature oligodendrocytes and was proposed to contribute to tumorigenesis in non-central nervous system tumors. However, BCAS1 role in diffuse glioma is still underexplored.

View Article and Find Full Text PDF

Prostaglandins are lipid mediators involved in physiological processes, such as constriction or dilation of blood vessels, but also pathophysiological processes, which include inflammation, pain and fever. They are produced by almost all cell types in the organism by activation of Prostaglandin endoperoxide synthases/Cyclooxygenases. The inducible Prostaglandin Endoperoxide Synthase 2/Cyclooxygenase 2 (PTGS2/COX2) plays an important role in pathologies associated with inflammatory signaling.

View Article and Find Full Text PDF

We report for the first time the controlled drug release from a nanoscale Zr-based metal-organic framework (MOF), UiO-66, in the presence of the enzyme alkaline phosphatase (ALP). This unprecedented reactivity was possible thanks to the prior functionalization of the MOF with N-PEG-PO ligands, which were designed for three specific aims: (1) to impart colloidal stability in phosphate-containing media; (2) to endow the MOF with multifunctionality thanks to azide groups for the covalent attachment of an imaging agent by click-chemistry; and (3) to confer stimuli-responsive properties, specifically the selective release of doxorubicin triggered by the enzymatic activity of ALP. Cell studies revealed that the functionalization of the MOF with N-(PEG)-PO ligands improved their intracellular stability and led to a sustained drug release compared to the bare MOF.

View Article and Find Full Text PDF

Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution.

Biology (Basel)

April 2023

Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Seville-CSIC, Junta de Andalucía, 41092 Seville, Spain.

The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures.

View Article and Find Full Text PDF

Membrane Vesicles of Toxigenic Affect the Metabolism of Liver HepG2 Cells.

Antioxidants (Basel)

March 2023

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain.

infection (CDI) appears to be associated with different liver diseases. secretes membrane vesicles (MVs), which may be involved in the development of nonalcoholic fatty liver disease (NALFD) and drug-induced liver injury (DILI). In this study, we investigated the presence of -derived MVs in patients with and without CDI, and analyzed their effects on pathways related to NAFLD and DILI in HepG2 cells.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease.

View Article and Find Full Text PDF

Analyzing time-dependent data acquired in a continuous flow is a major challenge for various fields, such as big data and machine learning. Being able to analyze a large volume of data from various sources, such as sensors, networks, and the internet, is essential for improving the efficiency of our society's production processes. Additionally, this vast amount of data is collected dynamically in a continuous stream.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), especially exosomes (50 to 150 nm), have been shown to play important roles in a wide range of physiological and pathological processes, including metabolic diseases such as Diabetes Mellitus (DM). In the last decade, several studies have demonstrated how EVs are involved in cell-to-cell communication. EVs are enriched in proteins, mRNAs and non-coding RNAs (miRNAs, long non-coding RNAs and circRNAS, among others) which are transferred to recipient cells and may have a profound impact in either their survival or functionality.

View Article and Find Full Text PDF

Editorial: Mesenchymal Stromal Cell Therapy for Regenerative Medicine.

Front Cell Neurosci

May 2022

BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin Institute of Health (BIH) at the Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

View Article and Find Full Text PDF

Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-β and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy.

View Article and Find Full Text PDF

LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection.

View Article and Find Full Text PDF

The transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 ().

View Article and Find Full Text PDF

The Role of Nitric Oxide in Stem Cell Biology.

Antioxidants (Basel)

March 2022

Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.

Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field.

View Article and Find Full Text PDF

During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase.

View Article and Find Full Text PDF

Stemness of Human Pluripotent Cells: Hypoxia-Like Response Induced by Low Nitric Oxide.

Antioxidants (Basel)

September 2021

Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain.

The optimization of conditions to promote the stemness of pluripotent cells in vitro is instrumental for their use in advanced therapies. We show here that exposure of human iPSCs and human ESCs to low concentrations of the chemical NO donor DETA/NO leads to stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) under normoxia, with this effect being dependent on diminished Pro 402 hydroxylation and decreased degradation by the proteasome. Moreover, the master genes of pluripotency, NANOG and OCT-4, were upregulated.

View Article and Find Full Text PDF

The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer.

View Article and Find Full Text PDF

Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the co-translational folding of actin and tubulin monomers. Additional functions of prefoldin have been described, including a positive contribution to transcription elongation and chromatin dynamics in yeast. Here we show that prefoldin perturbations provoked transcriptional alterations across the human genome.

View Article and Find Full Text PDF

We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues.

View Article and Find Full Text PDF

Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic β-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional β-cells to allow the re-establishment of the endogenous glucose homeostasis.

View Article and Find Full Text PDF

A new hypothetical model for pancreatic development based on change in the cell division orientation.

Gene

June 2021

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science & Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., Isfahan, Iran. Electronic address:

Although lifelong renewal and additional compensatory growth in response to demand are undeniable facts, so far, no specific stem cells have been found for pancreatic cells. According to the consensus model, the development of pancreas results from the hierarchical differentiation of pluripotent stem cells towards the appearance of the first endocrine and exocrine cells at approximately 7.5 to 8th gestation week (GW) of human embryo.

View Article and Find Full Text PDF

Archaeogenomic distinctiveness of the Isthmo-Colombian area.

Cell

April 2021

Department of Biology and Biotechnology "L. Spallanzani, " University of Pavia, Pavia 27100, Italy. Electronic address:

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component.

View Article and Find Full Text PDF

NQO1 protects obese mice through improvements in glucose and lipid metabolism.

NPJ Aging Mech Dis

November 2020

Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA.

Article Synopsis
  • Eating too much food can lead to health problems like insulin resistance, which affects how our body uses sugar.
  • In experiments with mice, activating a special protein called Nrf2 helped these mice stay healthy even when they ate a lot of fat by keeping their sugar levels balanced and helping them process fats better.
  • The mice with a special gene also showed fewer bad fat cells and better overall health because of improved metabolism and how their bodies used energy.
View Article and Find Full Text PDF