443,965 results match your criteria: "PR. China; University of Chinese Academy of Sciences[Affiliation]"

Despite the pivotal role of cytotoxic T lymphocytes (CTLs) in anti-tumor immunity, a substantial proportion of CTL-rich hepatocellular carcinoma (HCC) patients experience early relapse or immunotherapy resistance. However, spatial immune variations impacting the heterogeneous clinical outcomes of CTL-rich HCCs remain poorly understood. Here, we compared the single-cell and spatial landscapes of 20 CTL-rich HCCs with distinct prognoses using multiplexed in situ staining and validated the prognostic value of myeloid spatial patterns in a cohort of 386 patients.

View Article and Find Full Text PDF

The extract of the stems of R. Br. yielded three new terpenes () including two diterpenes and one triterpene, named euryachins C-E, as well as three known diterpenes ().

View Article and Find Full Text PDF

Dynamic Features Driven by Stochastic Collisions in a Nanopore for Precise Single-Molecule Identification.

J Am Chem Soc

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Nanopore technology holds great potential for single-molecule identification. However, extracting meaningful features from ionic current signals and understanding the molecular mechanisms underlying the specific features remain unresolved. In this study, we uncovered a distinctive ionic current pattern in a K238Q aerolysin nanopore, characterized by transient spikes superimposed on two stable transition states.

View Article and Find Full Text PDF

Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.

View Article and Find Full Text PDF

The number of cases of Alzheimer's disease (AD) characterized by progressive amnestic syndrome is dramatically increased with population aging. It is urgent to detect and diagnose this disease early. The state of amyloid-beta protein 1-42 (Aβ) was commonly regarded as a hallmark for early diagnosis of AD.

View Article and Find Full Text PDF

Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.

Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.

View Article and Find Full Text PDF

Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).

View Article and Find Full Text PDF

N skeleton-regulated cobalt phthalocyanine promotes polysulfide adsorption and redox kinetics.

Chem Commun (Camb)

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton Alberta T6G 2 M9, Canada.

An N skeleton substituent on cobalt phthalocyanine (CoPc) was meticulously studied to redistribute the charge in phthalocyanine, improve the mass diffusion, and promote the redox kinetics of polysulfides (LiPS), resulting in a significant ultra-low capacity decay of 0.11% at 5C over 500 cycles.

View Article and Find Full Text PDF

Chiral Membrane Containing Subnanometer Channels for Enantioselective Transport Amino Acids.

Anal Chem

January 2025

State Key Laboratory of Green Pesticide (CCNU), College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

The research of chiral separation technology is of great significance for understanding the origin of life and promoting the application of chiral molecules. Herein, anionic chiral pillar[6]arene and cationic pillar[6]arene were designed and synthesized, and a chiral pillar[6]arene membrane was constructed by layer-by-layer assembly through electrostatic interactions. The transport rates of l and d in this channel were 14.

View Article and Find Full Text PDF

There is very little research on the synthesis of β-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) -glycosides, which restricted their widespread application. Herein, a convenient and efficient approach to synthesize β-Kdo -glycosides was developed based on a TfO/(-Tol)SO preactivation strategy using bench stable peracetylated Kdo thioglycoside as a donor a thermodynamic S1-like mechanism.

View Article and Find Full Text PDF

The use of magnesium and methanol in the reduction of various functional groups has been well established. In this study, we present a reductive deuteration system using Mg/CHOD, which successfully facilitates the conversion of α,β-unsaturated esters, amides, and nitriles to their saturated counterparts. This protocol achieves good yields and high degrees of deuterium incorporation, while avoiding defunctionalization in the presence of various functional groups.

View Article and Find Full Text PDF

Estimating the Risk of Women Anemia Associated with Ozone Exposure Across 123 Low- and Middle-Income Countries: A Multicenter Epidemiological Study.

Environ Sci Technol

January 2025

SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China.

Anemia in women of reproductive age (WRA) presents a pressing global public health issue, particularly in low- and middle-income countries (LMICs). Yet, the potential impact of ozone (O) exposure on anemia remains uncertain. The study included 1,467,887 eligible women from 83 surveys of 45 LMICs between 2004 to 2020.

View Article and Find Full Text PDF

The epidemiology and gene mutation characteristics of pyrazinamide-resistant clinical isolates in Southern China.

Emerg Microbes Infect

January 2025

State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong, 510095, P.R. China.

This study investigates the epidemic trend of pyrazinamide (PZA)-resistant tuberculosis in Southern China over 11 years (2012-2022) and evaluates the mutation characteristics of PZA resistance-related genes ( and ) in clinical () isolates. To fulfil these goals, we analyzed the phenotypic PZA resistance characteristics of 14,927 clinical isolates for which Bactec MGIT 960 PZA drug susceptibility testing (DST) results were available, revealing that 2,054 (13.76%) isolates were resistant to PZA.

View Article and Find Full Text PDF

Targeted Nanoprobes Enabled Precision Theranostics in Triple-Negative Breast Cancer.

Chem Rec

January 2025

Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.

Triple-negative breast cancer (TNBC) represents a highly aggressive and prognostically unfavorable subtype of breast cancer, characterized by the absence of common hormone receptors, which renders conventional therapies largely ineffective. This review comprehensively examines the molecular and clinical characteristics of TNBC, underscoring the substantial challenges inherent in its treatment and the innovative potential of targeted nanoprobes in advancing both diagnostic and therapeutic paradigms. Through the modification of targeting molecules, nanoprobes can deliver therapeutic agents highly specific to TNBC cells, thus significantly improving the sensitivity of diagnostic modalities and the efficacy of therapeutic interventions.

View Article and Find Full Text PDF

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

Photocatalytic conversion of CO and HO into high-value-added C2 fuels remains a tough challenge, mainly due to the insufficient concentration of photogenerated electrons for the instability of C1 intermediates, which often tend to desorb easily and disable to form C─C bonds. In this work, photoreduction of CO-to-CH is successfully achieved by introducing adjacent C, N dual-vacancy sites within the heptazine rings of ultrathin g-CN, which results in the opening of two neighboring heptazine rings and forms a distinctive dipole-limited domain field (DLDF) structure. In situ X-ray photoelectron spectra and in situ fourier transform infrared spectra provide direct evidence of the rapid accumulation and transformation of C1 intermediates, especially CO and CHO, within the DLDF.

View Article and Find Full Text PDF

Interfacial fluid manipulation with bioinspired strategies: special wettability and asymmetric structures.

Chem Soc Rev

January 2025

School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.

The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required.

View Article and Find Full Text PDF

Hydrogen energy will play a dominant role in energy transition from fossil fuel to low carbon processes, while economical, efficient, and safe hydrogen storage and transportation technology has become one of the main bottlenecks that currently hinder the application of the hydrogen energy scale. Methanol has widely been regarded as a primary liquid H storage medium due to its high hydrogen content, easy storage and transportation and relatively low toxicity. Hydrogen release from methanol using photocatalysis has thus been the focus of intense research and recent years have witnessed its fast progress and drawbacks.

View Article and Find Full Text PDF

As precision medicine increasingly reveals the biological diversity among individuals, the demand for higher-throughput screening techniques, particularly suspension array technologies capable of more multiplexing from smaller samples in a single run, is intensifying. However, advancements in the multiplexing capability of current suspension platforms have lagged with limited alleviation, necessitating breakthroughs for innovative solutions that enable larger-scale measurements. Here, we introduce such a breakthrough with a novel mass-cytometric barcode engineering by metal nanoparticle-based "Lego Brick"-like self-assembly for high-throughput barcode design and capacity amplification.

View Article and Find Full Text PDF

The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting the processes, structures and environmental effects of NOM self-assembly. This review seeks to provide a tutorial-like compilation of data source determination, algorithm selection, model construction, interpretability analyses, applications and challenges for big-data-based ML aiming at elucidating NOM self-assembly mechanisms in environments.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.

View Article and Find Full Text PDF

The gut microbiome has emerged as a growing focus of research and public health interest, leading to the frequent exploration of probiotic dietary supplements as potential treatments for various disorders, such as anxiety and depression. In the present report, changes in inflammation and microbiome composition were assessed in model mice exhibiting depressive-like behaviors that were exposed to the probiotic HBUAS52074. It was found that HBUAS52074 alleviated the severity of depressive-like behaviors while increasing serum 5-HT concentrations.

View Article and Find Full Text PDF