445,525 results match your criteria: "PR China; Zhejiang Provincial Clinical Research Centre for Obstetrics and Gynecology[Affiliation]"

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.

View Article and Find Full Text PDF

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Background: Research data on the extent of and protocols related to physical restraint (PR) in pediatric intensive care units (PICUs) are scarce. Most previous studies in China on this topic have focused on the prevalence, reasons, and background of PR use among adult patients.

Purpose: This study was designed to delineate the application of PR and the factors associated with PR use in PICUs in China.

View Article and Find Full Text PDF

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

APE1-Activated and NIR-II Photothermal-Enhanced Chemodynamic Therapy Guided by Amplified Fluorescence Imaging.

Anal Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.

The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.

View Article and Find Full Text PDF

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.

View Article and Find Full Text PDF

Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-CN). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-CN (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc.

View Article and Find Full Text PDF

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).

View Article and Find Full Text PDF

Copper-catalysed radical cascade reaction of -(2-oxo-2-phenylethyl) substituted 2-pyridones with styrene to access 1,6-carboannulated 2-pyridone scaffolds.

Org Biomol Chem

January 2025

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

Herein, we present that treating -(2-oxo-2-phenylethyl) substituted 2-pyridones with styrenes in DMSO/HO at 120 °C affords 1,6-carboannulated 2-pyridone scaffolds with up to 79% yield. This protocol provides a simple and efficient method for obtaining complicated bicyclic 2-pyridones through a radical cascade reaction. Additionally, we have successfully synthesized 27 target compounds, which confirms the practicality and wide applicability of the proposed reaction.

View Article and Find Full Text PDF

Mutual suppression of MnO and SiO in an innovative anode design for enhanced cycling stability.

Chem Commun (Camb)

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

We designed a SiO@C/MnO composite material with ultrafine particle size using a simple sol-gel method and calcination process. SiO and MnO components produce a mutual suppression effect during the charge/discharge process to mitigate volume expansion and maintain the long-term stability of composite.

View Article and Find Full Text PDF

Unveiling Microscopic Variations during Photodynamic Therapy via Polarity-Responsive Fluorescence Lifetime Imaging.

Anal Chem

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.

Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, , with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized.

View Article and Find Full Text PDF

Aim: Ovarian cancer (OC) is a fatal female malignant tumor that severely impacts the health of women worldwide. Due to the lack of diagnostic biomarkers, 70% of OC patients are considered in the advanced stage at the first diagnosis. Exploring novel biomarkers for OC diagnosis has become an urgent clinical need to address.

View Article and Find Full Text PDF

PCBs were analysed in 110 samples, including marine fish, freshwater fish and marine bivalves. The levels of ∑PCBs in marine fish ranged from 0.18 to 5.

View Article and Find Full Text PDF

A Highly Selective Probe for Real-Time Monitoring of Ethylenediamine with Ratiometric Luminescent and Colorimetric Dual-Mode Responses.

Anal Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan, University Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.

Ethylenediamine (EDA), as an important chemical raw material and fine chemical intermediate, has been widely applied in various industries. Real-time monitoring of EDA is highly desirable in daily life due to its potential threat to human health. Herein, we report a molecular probe named 4,4'-(9-carbazole-3,6-diyl)bis(1-(naphthalen-2-ylmethyl)pyridin-1-ium) iodide (p-N-DPC·I) with ratiometric luminescent and colorimetric dual-mode responses toward EDA, endowing a highly sensitive and selective detection method for its real-time monitoring.

View Article and Find Full Text PDF

Unraveling the conversion mechanism toward spinel sulfides as cathode materials for Mg-ion batteries.

Phys Chem Chem Phys

January 2025

National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.

Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.

View Article and Find Full Text PDF

Graphene quantum dot-modified CoO/NiCoO yolk-shell polyhedrons as a polysulfide-adsorptive sulfur host for lithium-sulfur batteries.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.

View Article and Find Full Text PDF

3d-5d Orbital Hybridization in Nanoflower-Like High-Entropy Alloy for Highly Efficient Overall Water Splitting at High Current Density.

Small

January 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.

Exploring highlyefficient electrocatalysts for overall water splitting is a challenging butnecessary task for development of green and renewable energy. Herein, PtIrFeCoNi high-entropy alloy nanoflowers (HEA NFs) withstrong 3d-5d orbital hybridization were fabricated to achieve highly efficientoverall water splitting at high current density. The PtIrFeCoNi HEA NFs achieved a 57.

View Article and Find Full Text PDF

Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.

View Article and Find Full Text PDF

Regulating Intermediate Adsorption and Promoting Charge Transfer of CoCr-LDHs by Ce Doping for Enhancing Electrooxidation of 5-Hydroxymethylfurfural.

Small

January 2025

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.

View Article and Find Full Text PDF

Introduction: Using an Asian cohort with high prevalence of concomitant cerebrovascular disease (CeVD), we evaluated the performance of a plasma immunoassay for tau phosphorylated at threonine 217 (p-tau217) in detecting amyloid beta positivity (Aβ+) on positron emission tomography and cognitive decline, based on a three-range reference, which stratified patients into low-, intermediate-, and high-risk groups for Aβ+.

Methods: Brain amyloid status (Aβ- [n = 142] vs Aβ+ [n = 73]) on amyloid PET scans was assessed along with the plasma ALZpath p-tau217 assay to derive three-range reference points for PET Aβ+ based on 90% sensitivity (lower threshold) and 90% specificity (upper threshold).

Results: Plasma p-tau217 (area under the curve [AUC] = 0.

View Article and Find Full Text PDF