445,673 results match your criteria: "PR China; Zhejiang Institute of Tianjin University[Affiliation]"

Developing Orthogonal Fluorescent RNAs for Photoactive Dual-color Imaging of RNAs in Live Cells.

Angew Chem Int Ed Engl

January 2025

Hunan University, College of Chemistry and Chemical Engineering, Yuelushan, Changsha, Hunan, 410082, P.R.China, 410082, Changsha, CHINA.

Fluorogenic RNA aptamers have revolutionized the visualization of RNAs within complex cellular processes. A representative category of them employs the derivatives of green fluorescent protein chromophore, 4-hydroxybenzlidene imidazolinone (HBI), as chromophores. However, the structural homogeneity of their chromophoric backbones causes severe cross-reactivity with other homologous chromophores.

View Article and Find Full Text PDF

Chondroid syringoma, a mixed tumor of the skin, is an acquired hamartoma that differentiates into hair follicles, sebaceous glands, and apocrine sweat glands. Chondroid syringoma in the ear region is exceptionally rare. However, we present 2 cases of ear chondroid syringoma: 1 involving multiple lesions in the external auditory canal and the other including a single lesion behind the auricle.

View Article and Find Full Text PDF

Conformation Regulation of Perylene Diimide Derivatives by Lanthanide Coordination for Turn-On Fluorescence Sensing of Sarin Simulants.

Inorg Chem

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials that have received much attention in recent years, in which the organic ligand conformation changes usually lead to variations of their sensing behavior. Based on this, in the present work, perylene diimide (PDI) derivatives with excellent photochemical properties closely related to their conformation and molecule packing fashion were selected as organic linkers to detect sarin simulant diethyl chlorophosphate (DCP). By the coordination interactions with large lanthanide cations through terminal carboxylate groups from the PDI derivative, a series of one-dimensional coordination polymers, named [Ln(PDICl-2COO)(μ-O)(DMF)] (SNNU-112, Ln = Yb/Tb/Sm/Nd/Pr/Gd/Eu/Er/Ce, PDICl-2COOH = ,'-bis(4-benzoic acid)-1,2,6,7-tetrachlorohydrazone-3,4,9,10-tetracarboxylic acid diimide) were synthesized.

View Article and Find Full Text PDF

Luminescent Metal-Organic Framework with Outstanding "Turn-On" Hg Sensing Ability First Constructed by an AIE Ligand.

Inorg Chem

January 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Hg is highly toxic and can cause serious harm to the environment and humans. Thus, it is vital to develop efficient Hg sensors. In this work, a LMOF-based (LMOF = luminescent metal-organic framework) "turn-on" Hg sensor () is first developed by an aggregation-induced emission (AIE) functional ligand.

View Article and Find Full Text PDF

Selective Crystallization Separation of Uranium(VI) Complexes from Lanthanides.

Inorg Chem

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.

View Article and Find Full Text PDF

Highly Humidity-Resistant Oxynitride Phosphor BaSiNO:Ce for pc-LEDs.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, P. R. China.

Many phosphor hosts, for example, nitrides and sulfides, often face challenges such as hydrolysis and oxidation, limiting their application in phosphor-converted white light-emitting diodes (pc-LEDs). In this study, we developed a highly humidity-resistant yellow-green-emitting phosphor BaSiNO:Ce (BSNO:Ce). The DFT calculations revealed a high Debye temperature (Θ = 1159 K), indicating a rigid crystal structure that contributes to the photoluminescence thermal quenching resistance of BSNO.

View Article and Find Full Text PDF

Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed , OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years.

View Article and Find Full Text PDF

Significantly promoting the lithium-ion transport performances of MOFs-based electrolytes a strategy of introducing fluoro groups in the crystal frameworks.

Chem Commun (Camb)

January 2025

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Metal-organic frameworks (MOFs) with well-ordered channels are considered ideal solid-state electrolytes (SSEs) for lithium ionic conductors and are expected to be utilized in all-solid-state Li-ion batteries. However, the outstanding Li conductivity of MOFs, especially the properties at low temperatures, has become a crucial problem to overcome. Herein, a breakthrough is first realized to cope with this challenge a strategy of introducing fluoro-substituted bridging ligands in MOFs.

View Article and Find Full Text PDF

Correction for 'Silver(I)-iodine cluster with efficient thermally activated delayed fluorescence and suppressed concentration quenching' by Xiao Li , , 2025, https://doi.org/10.1039/d4dt02855d.

View Article and Find Full Text PDF

Organic/Inorganic Hybrid Cross-Linked Gel Polymer Electrolyte for Optimizing the Solvation Structure of Lithium Ions.

ACS Appl Mater Interfaces

January 2025

Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, PR China.

Lithium metal electrodes inevitably lead to the decomposition of the liquid electrolyte and lithium dendrite growth, both of which result in the formation of unstable solid electrolyte intermediates (SEIs). Gel polymer electrolytes (GPEs) are expected to replace liquid electrolytes for optimizing the SEI issues of lithium metal. Herein, a cellulose-based gel electrolyte cross-linked by thiol-modified polyhedral oligomeric silsesquioxane (thiol-modified-POSS) was successfully obtained based on "thiol-ene" click chemistry.

View Article and Find Full Text PDF

Photodynamic bactericidal nanomaterials in food packaging: From principle to application.

J Food Sci

January 2025

Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.

Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.

View Article and Find Full Text PDF

Multiscale Mechanical Study of Proanthocyanidins for Recovering Residual Stress in Decellularized Blood Vessels.

Adv Healthc Mater

January 2025

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.

Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.

View Article and Find Full Text PDF

Bio-Based Elastomers: Design, Properties, and Biomedical Applications.

Adv Mater

January 2025

State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

To reduce carbon footprint and human dependence on fossil fuels, the field of bio-based polymers has undergone explosive growth in recent years. Among them, bio-based elastomers have gained tremendous attention for their inherent softness, high strain, and resilience. In this review, the recent progress of representative bio-based elastomers derived from molecular building blocks and biopolymers are recapitulated, with an emphasis on molecular design, synthesis approaches, and mechanical performance.

View Article and Find Full Text PDF

Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.

View Article and Find Full Text PDF

Oncolytic Virus Targeted Therapy for Glioma via Intravenous Delivery.

Adv Healthc Mater

January 2025

State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.

Glioma, the deadly primary intracranial tumor, poses challenges in clinical treatment due to its infiltrative growth and resistance to radiation. Oncolytic virus therapy holds potential for the treatment of malignant gliomas, but its application is impeded by the requirement for intracranial injections due to the presence of blood-brain barrier (BBB). In this study, to overcome this limitation, the study develops a nanocapsule encapsulating the recombinant oncolytic virus EV-A71-miR124T, enabling the treatment of glioma through intravenous administration.

View Article and Find Full Text PDF

Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).

View Article and Find Full Text PDF

Implantable physiological electrodes provide unprecedented opportunities for real-time and uninterrupted monitoring of biological signals. Most implantable electronics adopt thin-film substrates with low permeability that severely hampers tissue metabolism, impeding their long-term biocompatibility. Recent innovations have seen the advent of permeable electronics through the strategic modification of liquid metals (LMs) onto porous substrates.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Non-Volatile Multifunctional Dipole Molecules Enable 19.2% Efficiency for Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, 1st Jinji Road, Guilin, 541004, P. R. China.

Dipole molecules (DMs) show great potential in defect passivation for printable mesoscopic perovskite solar cells (p-MPSCs), although the crystallization process of p-MPSCs is more intricate and challenging than planar perovskite solar cells. In this work, a series of non-volatile multifunctional DMs are employed as additives to enhance the crystallization of perovskites and improve both the power conversion efficiency (PCE) and stability of the devices. This enhancement is achieved by regulating the side groups of benzoic acid molecules with the electron-donating groups such as guanidine (─NH─C(═NH)─NH), amino (─NH) and formamidine (─C(═NH)─NH).

View Article and Find Full Text PDF

Single-electron transfer, low alkali metal contents, and large-molecular masses limit the capacity of cathodes. This study uses a cost-effective and light-molecular-mass orthosilicate material, KFeSiO, with a high initial potassium content, as a cathode for potassium-ion batteries to enable the transfer of more than one electron. Despite the limited valence change of Fe ions during cycling, KFeSiO can undergo multiple electron transfers via successive oxygen anionic redox reactions to generate a high reversible capacity.

View Article and Find Full Text PDF

Bioinspired 1D Anisotropic Double-Spiral Metal Wires for Efficient Fog Harvesting.

Small

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China.

Innovative design strategies of fog harvesting devices (FHDs) demonstrate promising remedy for water crisis in arid areas. 1D FHDs ensure unimpeded wind circulation and can be manufactured more cost-effectively for extensive regions. Inspired by cactus thorns, desert beetles, and spider silk, two metal organic frameworks (MOFs) functionalized Cu wires with opposite wettability are double-twisted by a mechanical twisting machine, forming 1D double-spiral Cu wires with alternating superhydrophobic/superhydrophilic dual-MOF patterns.

View Article and Find Full Text PDF

Molecular Engineering of 2', 7'-Dichlorofluorescein to Unlock Efficient Superoxide Anion NIR-II Fluorescent Imaging and Tumor Photothermal Therapy.

Small

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.

Although classical fluorescent dyes feature advantages of high quantum yield, tunable "OFF-ON" fluorescence, and modifiable chemical structures, etc., their bio-applications in deep tissue remains challenging due to their excessively short emission wavelength (that may lead to superficial tissue penetration depth). Therefore, there is a pressing need for pushing the wavelength of classical dyes from visible region to NIR-II window.

View Article and Find Full Text PDF

Boosting Amino Acid Synthesis with WO Sub-Nanoclusters.

Adv Mater

January 2025

College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.

The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.

View Article and Find Full Text PDF

Humans are widely exposed to phenols, parabens, and phthalates with health risks, while the effects of these chemicals on biological aging remain unclear. Among 3,441 adults in the National Health and Nutrition Examination Survey 2005-2010, phenol, paraben, and phthalate concentrations were measured and phenotypic age acceleration (PhenoAgeAccel) was calculated. Linear regression and weighted quantile sum (WQS) regression were used to evaluate the associations of single and mixed chemicals with PhenoAgeAccel.

View Article and Find Full Text PDF

Permeable, Stretchable, and Recyclable Cellulose Aerogel On-Skin Electronics for Dual-Modal Sensing and Personal Healthcare.

ACS Nano

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.

Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.

View Article and Find Full Text PDF