446,903 results match your criteria: "PR China; The Affiliated Suqian First People's Hospital of Nanjing Medical University[Affiliation]"
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFJ Org Chem
January 2025
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China.
Herein, we report the first example that P(O)-H species including -phosphonates and -phosphine oxides could participate in a highly regioselective 1,4-addition to in situ generated 1-benzopyrylium ion from C3-substituted 2-chromene hemiketals, which provides a brand-new and effective approach for the synthesis of C4-phosphorylated 4-chromenes with diverse C3-functionality (ketone, ester, sulfonyl, aryl, and alkyl groups). In total, the reaction features the use of inexpensive Zn(ClO)·6HO as a catalyst, low catalyst loading (only 5 mol %), mild reaction conditions (60 °C, 10 min to 24 h), and broad substrate scope (46 examples) as well as good to high yields (>90% yield on average). More importantly, mechanistic experiments demonstrated the essential role of the C3-substituent on 2-chromene hemiketals in stabilizing the in situ generated 1-benzopyrylium ion and the regioselective 1,4-addition control.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, PR China.
Rationale: Bilateral gluteus medius contractures in adults are rare in clinical practice, with only a few cases reported. These contractures may result from repeated intramuscular injections during childhood. Understanding the clinical manifestations, diagnostic process, treatment, and outcomes can provide insights into effective management strategies.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFACS Nano
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
Recent progress in superconductor-insulator transition has shed light on the intermediate metallic state with unique electronic inhomogeneity. The microscopic model, suggesting that carrier spatial distribution plays a decisive role in the intermediate state, has been instrumental in understanding the quantum transition. However, the narrow carrier density window in which the intermediate state exists necessitates precise control of the gate dielectric layer, presenting a challenge to in situ map the carrier spatial distribution.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFPlant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFPLoS One
January 2025
School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, P. R. China.
Purpose: To evaluate the corneal biomechanical properties of phacoemulsification in the treatment of cataract patients.
Methods: Pertinent studies were searched in PubMed, EMBASE, Web of Science and clinicaltrials.gov.
PLoS One
January 2025
The School of Finance, Hunan University of Technology and Business, Changsha, PR China.
As enterprise leaders, CEOs play a critical role in driving enterprise investment in pollution control. However, few studies have explored the motivations behind enterprise investment in pollution control, primarily how CEOs' early experiences influence their decisions. Based on the perspective of imprinting theory, this study examines the impact of CEOs with government work experience on enterprise investment in pollution control and the boundary conditions of this impact.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, GC Women University Sialkot, Sialkot, Pakistan.
Modern dialogue systems rely on emotion recognition in conversation (ERC) as a core element enabling empathetic and human-like interactions. However, the weak correlation between emotions and semantics poses significant challenges to emotion recognition in dialogue. Semantically similar utterances can express different types of emotions, depending on the context or speaker.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Electron Microscopy, South China University of Technology, Guangzhou 511436, China.
Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
An -heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
Phonon modal nonequilibrium is believed to widely exist around nanoscale hotspots, which can significantly affect the performance of nano-electronic and optoelectronic devices. However, such a phenomenon has not been explicitly observed in 3D device semiconductors at the nanoscale. Here, by employing a tip-enhanced Raman thermal measurement approach, substantial phonon nonequilibrium in gallium nitride near sub-10 nm laser-excited hotspots is directly revealed for the first time.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China.
Interventional catheters have been widely applied in diagnostics, therapeutics, and other biomedical areas. The complications caused by catheter-related bacterial infection, venous thrombosis, and vascular abrasion have become the main reasons for the failure of interventional therapy. In this study, polyacrylamide/poly(acrylic acid) lubricating copolymer brushes were constructed on the surface of catheters and efficiently resisted the adhesion of blood components and bacteria through hydration and electrostatic repulsion effects.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.
Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.
View Article and Find Full Text PDFACS Nano
January 2025
Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China.
Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.
View Article and Find Full Text PDFChemSusChem
January 2025
Central South University, College of Chemistry and Chemical Engineering, No.932 South Lushan Road, Yuelu District, 410083, Changsha, CHINA.
The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
January 2025
Division of Nephrology, Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, P. R. China.
This study aimed to assess the correlation between estimated pulse wave velocity (ePWV) and mortality rates related to all-cause and cardiovascular disease (CVD) among individuals diagnosed with chronic kidney disease (CKD) in the United States. A total of 4669 participants with CKD were identified from the National Health and Nutrition Examination Survey conducted between 1999 and 2018. We calculated the incidence of CKD using an estimated glomerular filtration rate (eGFR) of < 60 mL/min/1.
View Article and Find Full Text PDFSmall
January 2025
XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.
View Article and Find Full Text PDF