446,538 results match your criteria: "PR China; Institute of Pediatric Disease Research in Yunnan[Affiliation]"

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.

View Article and Find Full Text PDF

Effects of Silk Fibroin Hydrogel Degradation on the Proliferation and Chondrogenesis of Encapsulated Stem Cells.

Biomacromolecules

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.

Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).

View Article and Find Full Text PDF

Background: Nonweightbearing preoperative assessments avoid quadriceps contraction that tends to affect patellar motion and appear to be inaccurate in quantifying anatomic factors, which can lead to incorrect corrections and postoperative complications.

Questions/purposes: (1) Does the relationship of patellar axial malalignment and other anatomic factors change during weightbearing? (2) What anatomic factor was most strongly correlated with recurrent patellar dislocation during weightbearing?

Methods: This prospective, comparative, observational study recruited participants at our institution between January 2023 and September 2023. During this time, all patients with recurrent patellar dislocations received both weightbearing and nonweightbearing CT scans; control patients who received unilateral CT scans because of injuries or benign tumors received both weightbearing and nonweightbearing CT scans.

View Article and Find Full Text PDF

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Intranasal Administrations of AP39-Loaded Liposomes Selectively Deliver H2S to Neuronal Mitochondria to Protect Neonatal Hypoxia-Ischemia by Targeting ERK1/2 and Caspase-1.

ACS Biomater Sci Eng

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.

Mitochondrial dysfunction contributes to the pathology of hypoxia-ischemia (HI) brain damage by aberrant production of ROS. Hydrogen sulfide (HS) has been demonstrated to exert neuroprotective effects through antioxidant mechanisms. However, the diffusion of HS is not specifically targeted and may even be systemically toxic.

View Article and Find Full Text PDF

Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.

View Article and Find Full Text PDF

Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.

View Article and Find Full Text PDF

Multifunctional Polar Polymer Boosting PEO Electrolytes toward High Room Temperature Ionic Conductivity, High-Voltage Stability, and Excellent Elongation.

ACS Appl Mater Interfaces

January 2025

International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.

Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.

View Article and Find Full Text PDF

Deer antler blastema progenitor cells (ABPCs) are promising for regenerative medicine due to their role in annual antler regeneration, the only case of complete organ regeneration in mammals. ABPC-derived signals show great potential for promoting regeneration in tissues with limited natural regenerative ability. Our findings demonstrate the capability of extracellular vesicles from ABPCs (EVs) to repair spinal cord injury (SCI), a condition with low regenerative capacity.

View Article and Find Full Text PDF

Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.

View Article and Find Full Text PDF

Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing.

Anal Chem

January 2025

School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.

View Article and Find Full Text PDF

Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA.

Mol Plant Pathol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm Resources, Hebei Agricultural University, Baoding, China.

Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes.

View Article and Find Full Text PDF

Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups.

ACS Nano

January 2025

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.

View Article and Find Full Text PDF

This systematic review and meta-analysis evaluated the effects of sodium bicarbonate (NaHCO₃) supplementation on 200 m time trial performance and physiological responses in swimmers, following PRISMA guidelines. A comprehensive search across five databases identified eligible randomized controlled trials comparing NaHCO₃ with placebo. Outcomes were 200 m time, blood bicarbonate, blood lactate, and blood pH.

View Article and Find Full Text PDF

Physical activity alleviated associations of oxidation capacity of the atmosphere with platelet-based inflammatory indicators: findings from the Henan Rural Cohort Study.

Environ Sci Process Impacts

January 2025

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.

: several adverse effects of ozone (O) and nitrogen dioxide (NO) are assessed using combined oxidant capacity (O) and redox-weighted oxidant capacity (Owtx) as surrogates. However, the associations of oxidant capacity (O and Owtx) with platelet-based inflammatory indicators and the potential modifying role of physical activity (PA) remain unclear. : 31 318 participants were selected from the baseline survey of the Henan Rural Cohort Study.

View Article and Find Full Text PDF

Revisiting the in-plane and in-channel diffusion of lithium ions in a solid-state electrolyte at room temperature through neural network-assisted molecular dynamics simulations.

Phys Chem Chem Phys

January 2025

Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.

Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.

View Article and Find Full Text PDF

Rational engineering of a recognition group to construct a two-photon reaction-based fluorescent probe for rapid and selective sensing of cysteine.

Analyst

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

It is highly required to rationally design fluorescent probes a molecular engineering strategy with desired analytical performance for applications in sensing and imaging. Reaction-based fluorescent probes for highly selective sensing of cysteine (Cys) are mainly based on the participation of Cys in reactions such as, addition-cyclization with acrylates, cyclization with aldehydes, coordination displacement, Michael addition reactions, and cleavage reactions. Cys-triggered reactions with the O atoms of ether bonds has also been used to construct reaction-based fluorescent probes based on the substitution of the ether with the nucleophilic thiolate of Cys.

View Article and Find Full Text PDF

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.

View Article and Find Full Text PDF

The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing.

View Article and Find Full Text PDF

Neuropilin 1 (NRP1) is upregulated in various types of malignant tumors, especially non-small-cell lung cancer (NSCLC). However, the precise mechanisms for membrane localization and regulation are not fully understood. Observations from super-resolution microscopy have revealed that NRP1 tends to form nanoscale clusters on the cell membrane, with these clusters varying significantly in size and density across different regions.

View Article and Find Full Text PDF

Triple circularly polarized luminescence of phenylalanine-based supramolecular gels regulated by kinetic and thermodynamic assembly pathways.

Chem Commun (Camb)

January 2025

State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.

A single phenylalanine-based gelator can self-assemble into various chiral nanostructures with triple circularly polarized luminescence (CPL). Its supramolecular assembly and CPL emission are found to be dependent on the kinetic and thermodynamic pathways. This work provides new insight into the regulation of CPL-active functional materials.

View Article and Find Full Text PDF

Cp*Co(III)-catalyzed -alkylation/alkenylation of anilides.

Org Biomol Chem

January 2025

College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.

A highly practical and efficient Cp*Co(III)-catalyzed C-H alkylation/alkenylation reaction of anilides with maleimides and acrylates was developed, during which a weakly coordinating amide carbonyl group functioned as the directing group. This approach features high efficiency, good functional group tolerance, and broad substrate scope, and a variety of 3-substituted succinimides and -alkenylated anilides were synthesized in moderate to excellent yields. Furthermore, the reaction is highly selective, affording mono--alkylated/alkenylated products only.

View Article and Find Full Text PDF

Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks.

Nanoscale

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.

View Article and Find Full Text PDF