447,615 results match your criteria: "PR China; Guangzhou University of Chinese Medicine[Affiliation]"

Macroscopic Gold Cluster Helical Tendrils.

J Am Chem Soc

January 2025

Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.

Handedness-controllable macroscopic helices are needed for understanding the chirality transfer through scales and design of high-performance devices. Bottom-up self-assembly rarely affords macroscopic helical superstructures because of accumulating disorder that is difficult to avoid during hierarchical self-assembly. Here, we demonstrate that tetragold clusters can assemble into macroscopic helices at the centimeter scale.

View Article and Find Full Text PDF

Study Design: A cross-sectional analysis of 10,000 cervical spine X-rays.

Objective: This study investigates the variations in C6S and C7S across demographic factors (gender, age, cervical curvature, symptoms) and explores their correlation. Additionally, machine learning models are applied to improve the accuracy of C7S prediction.

View Article and Find Full Text PDF

Ultra-precise ruler for ammonia nitrogen quantification in electrochemical synthesis experiments.

Anal Methods

January 2025

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.

The field of electrochemical ammonia synthesis has made rapid advancements, attracting a large number of scientists to contribute to this area of research. Accurate detection of ammonia is crucial in this process for evaluating the efficiency and selectivity of electrocatalysts. In this study, we systematically investigate the indophenol blue method for ammonia detection, examining the effects of key factors such as solution pH, nitrate concentration, and metal ion concentration on measurement accuracy.

View Article and Find Full Text PDF

Ag@g-CN/MoS heterostructure for efficient photocatalytic oxygen evolution under visible light irradiation.

Chem Commun (Camb)

January 2025

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.

Herein, an Ag@g-CN/MoS heterostructure is successfully synthesized for efficient solar-to-water oxidation. UV-vis DRS and steady-state PL analyses reveal the narrow band gap (2.10 eV) and efficient charge separation properties of the Ag nanoparticles and MoS, respectively.

View Article and Find Full Text PDF

Logical Analysis of Multiple miRNAs with Isothermal Molecular Classifiers Based on LATE-RCA.

Nano Lett

January 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Logical analysis of multiple-miRNA expression information and immediate output of diagnostic results facilitates early cancer detection. In this work, we constructed an isothermal molecular classifier capable of performing computations on multiple miRNAs and directly providing diagnosis results. First, we developed linear-after-the-exponential rolling circle amplification (LATE-RCA), a nearly linear isothermal amplification that does not destroy the original quantitative information about miRNAs.

View Article and Find Full Text PDF

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Natural biomolecules for cell-interface engineering.

Chem Sci

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China

Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation.

View Article and Find Full Text PDF

Semiconductor magic-sized nanoclusters (MSCs) possess atomic-level compositional precision and ultrasmall dimensions, allowing accurate modulation of electrochemiluminescence (ECL) properties, essential for advanced bioanalytical applications. However, low intrinsic ECL intensity and poor stability in bipolar electrode (BPE)-ECL systems hinder their broader use. In this work, we addressed these limitations through doping and direct optical crosslinking strategies, achieving a 24-fold boost in the ECL signal and a fivefold stability increase for doped (CdS):Ag MSCs compared with original (CdS) MSCs.

View Article and Find Full Text PDF

Remote ischemic conditioning (RIC), including pre-conditioning (RIPC, before the ischemic event), per-conditioning (RIPerC, during the ischemic event), and post-conditioning (RIPostC, after the ischemic event), protects the liver in animal hepatic ischemia-reperfusion injuries models. However, several questions regarding the optimal timing of intervention and administration protocols remain unanswered. Therefore, the preclinical evidence on RIC in the HIRI models was systematically reviewed and meta-analyzed in the present review to provide constructive and helpful information for future works.

View Article and Find Full Text PDF

Depression and coronary heart disease (CHD) are two interconnected diseases that profoundly impact global health. Depression is both a complex psychiatric disorder and an established risk factor for CHD. Sirtuin 1 (SIRT1) is an enzyme that requires the cofactor nicotinamide adenine dinucleotide (NAD) to perform its deacetylation function, and its involvement is crucial in reducing cardiovascular risks that are associated with depression.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex etiology primarily linked to abnormalities in B lymphocytes within the human body, resulting in the production of numerous pathogenic autoantibodies. Telitacicept is a relatively novel humanized, recombinant transmembrane activator, calcium modulator and cyclophilin ligand interactor fused with the Fc portion (TACI-Fc). It works by competitively inhibiting the TACI site, neutralizing the activity of B-cell lymphocyte stimulator and A proliferation-inducing ligand.

View Article and Find Full Text PDF

Correction: Graphene oxide-based silsesquioxane-crosslinked networks - synthesis and rheological behavior.

RSC Adv

January 2025

College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University Shenzhen 518060 PR China +86-0755-26536239 +86-0755-26538236.

[This corrects the article DOI: 10.1039/C7RA02764H.].

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices.

View Article and Find Full Text PDF

Background: Minimal change disease (MCD) is a podocytopathy more commonly seen in children, but it also accounts for 10%-25% of adult nephrotic syndrome. High-dose oral glucocorticoids were recommended for initial treatment of MCD. However, long-term use of systemic corticosteroids is associated with significant adverse events, such as steroid-induced diabetes and infections.

View Article and Find Full Text PDF

Purpose: To assess the activity and toxicity of hepatic arterial infusion chemotherapy (HAIC)+tislelizumab+lenvatinib (HAIC+tisle+len) in hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) type IV (Vp4 hCC) in a real-world context.

Methods: Fifty-five patients, with Vp4 hCC receiving HAIC+tisle+len therapy from April 2021 to December 2022, were analyzed retrospectively. Data on patient characteristics, adverse events (AEs), treatment, and survival were collected.

View Article and Find Full Text PDF

Green Glyphosate Treatment with Ferrihydrite and CaO via Forming Surface Ternary Complex.

Environ Sci Technol

January 2025

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO (FH/CaO) via regulating the coordination of PMG with FH and Ca, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca released by CaO, forming a FH-PMG-Ca ternary surface complex.

View Article and Find Full Text PDF

Targeted Conversion of Biomass into Primary Diamines via Carbon Shell-Confined Cobalt Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China.

Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system.

View Article and Find Full Text PDF

Activating Redox Chemistry of Quinones for High Energy Density Aqueous Sodium-Ion Batteries.

J Am Chem Soc

January 2025

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Anode materials with high capacity and suitable redox potential are crucial for improving the energy density of aqueous sodium-ion batteries (ASIBs). And organic anode materials play a promising role due to their tunable electrochemical performance. However, the insufficient electroactive sites lead to a low capacity, hindering the elevation of energy density.

View Article and Find Full Text PDF

The growth and integration of position-controlled, morphology-programmable silicon nanowires (SiNWs), directly upon low-cost polymer substrates instead of postgrowth transferring, is attractive for developing advanced flexible sensors and logics. In this work, a low temperature growth of SiNWs at only 200 °C has been demonstrated, for the first time, upon flexible polyimide (PI) films, via a planar solid-liquid-solid (IPSLS) growth mechanism. The SiNWs with diameter of ∼146 nm can be grown into precise locations on PI as orderly array and with preferred elastic geometry.

View Article and Find Full Text PDF

The aim of this study was to assess the utility of weighted amide proton transfer (APT) MRI in three different rodent models of hepatocellular carcinoma (HCC). APT MRI was evaluated in models of diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft and human HepG2 ectopic xenograft. All models of HCC showed a higher APT signal over the surrounding normal tissues.

View Article and Find Full Text PDF

Achieving dual functionalities of hydrophobicity and excellent microwave transmission in a single material remains a significant challenge, especially for advanced applications in aerospace, telecommunications, and navigation engineering. Inspired by natural designs like chestnut burrs, bioinspired polyaniline (PANI) particles with tunable micro-/nanostructures through a facile template-free polymerization process have been developed. By regulating the polarity of the reaction system, temperature, and reaction time, various hierarchical structures, including cross-linked nanosheets, chestnut burr-like spheres, and starburst flower-like structures, are synthesized.

View Article and Find Full Text PDF

Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities.

View Article and Find Full Text PDF

Prohibitins in infection: potential therapeutic targets.

Future Microbiol

January 2025

Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China.

Prohibitins (PHBs) are members of a highly conserved family of proteins, including prohibitin1 and prohibitin2. These proteins are predominantly localized in mitochondria, the nucleus, and cell membranes, where they play critical roles in mitochondrial biogenesis, apoptosis, immune regulation, and other biological processes. Recent studies have demonstrated that both PHB1 and PHB2 can act as a complex or independently to participate in the pathogen infection process.

View Article and Find Full Text PDF

Comprehensive analysis of the interaction microbiome and prostate cancer: an initial exploration from multi-cohort metagenome and GWAS studies.

J Transl Med

January 2025

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.

Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.

View Article and Find Full Text PDF

CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis.

J Nanobiotechnology

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.

Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.

View Article and Find Full Text PDF