2 results match your criteria: "PO Box 23. and Monash University[Affiliation]"
Dalton Trans
July 2021
School of Chemistry, PO Box 23. and Monash University, VIC 3800, Australia.
Several new, very bulky arene-bridged bis(amine) (viz. 1,3- and 1,4-{N(H)(SiPri3)}2(μ-C6H4), L1H2 and L2H2, respectively) and bis(amidine) pro-ligands (viz. 4,6-{[Dip(H)N](DipN)C}2(μ-DBF), DBF = dibenzofurandiyl, L3H2; and 1,3-{Ar†N(H)C(But)N}2(μ-C6H4), Ar† = C6H2{C(H)Ph2}2Pri-2,6,4, L4H2) have been developed.
View Article and Find Full Text PDFDalton Trans
June 2013
School of Chemistry, PO Box 23. and Monash University, VIC, 3800, Australia.
Uncatalysed 1,3-dipolar cycloaddition reactions between two phosphaalkynes, P≡CR (R = Bu(t) or Me), and a series of di-, tri- and poly-azido precursor compounds have given very high yields of a range of triazaphosphole substituted systems. These comprise the 1,1'-bis(triazaphosphole)ferrocenes, [Fe{C5H4(N3PCR)}2], the tris(triazaphosphole)cyclohexane, cis-1,3,5-C6H9(N3PCBu(t))3, and the poly(allyltriazaphosphole)s, {C3H5(N3PCR)}∞. Electrochemical studies on the 1,1'-bis(triazaphosphole)ferrocenes reveal the compounds to undergo reversible 1-electron oxidation processes, at significantly more positive potentials than ferrocene itself.
View Article and Find Full Text PDF