235,905 results match your criteria: "P.R. China ; Engineering Research Center of Natural Anticancer Drugs[Affiliation]"

Lung adenocarcinoma (LUAD) is the most common histological subtype of nonsmall-cell lung cancer. Herein, a multiomics method, which combined proteomic and N-glycoproteomic analyses, was developed to analyze the normal and cancerous bronchoalveolar lavage fluids (BALFs) from six LUAD patients to identify potential biomarkers of LUAD. The data-independent acquisition proteomic analysis was first used to analyze BALFs, which identified 59 differentially expressed proteins (DEPs).

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Highly Optimized CNS Penetrant Inhibitors of EGFR Exon20 Insertion Mutations.

J Med Chem

January 2025

Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China.

Despite recent advances in the inhibition of EGFR (epidermal growth factor receptor), there remains a clinical need for new EGFR Exon20 insertion (Ex20Ins) inhibitors that spare EGFR WT. Herein, we report the discovery and optimization of two chemical series leading to ether and biaryl as potent, selective, and brain-penetrant inhibitors of Ex20Ins mutants. Building on our earlier discovery of alkyne which allowed access to CNS property space for an Ex20Ins inhibitor, we utilized structure-based design to move to lower lipophilicity and lower CL compounds while maintaining a WT selectivity margin.

View Article and Find Full Text PDF

We demonstrate here an efficient and facile Ni-catalyzed electrochemical cross-electrophile thiolation approach for readily available alkyl alcohols with pyridyl thioesters. This C(sp)-S bond-forming modular strategy displays extensive substrate adaptability and good functional group tolerance, which allows the production of a range of alkyl sulfides with specific chemoselectivity. Furthermore, the potential applications of this methodology are illustrated by last-stage modification of bioactive molecules and sulfinylative cross-couplings.

View Article and Find Full Text PDF

Accumulation of Water-Soluble Polysaccharides during Lychee Pulp Fermentation with Involves Endoglucanase Expression.

J Agric Food Chem

January 2025

Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China.

In the current work, lychee pulp was subjected to ATCC 14917 fermentation, leading to a substantial increase (2.32-2.67-fold) in water-soluble polysaccharides (WSP).

View Article and Find Full Text PDF

PbOI: A Lead Oxyhalide IR Optical Crystal with an Unprecedented [OPb] Chain Featuring a Wide Transmittance Range and Large Birefringence.

Inorg Chem

January 2025

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, and Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, P. R. China.

Among the infrared (IR) optical material systems, the heavy-metal oxyhalide system has become an emerging system in recent years. Introducing heavy-metal cations and halogen anions with large atomic numbers is conducive to widening the IR transparency window and improving the birefringence value. Our experiments focus on the PbO-PbI system and find a new lead oxyhalide, PbOI.

View Article and Find Full Text PDF

Objectives: This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications.

Methods: This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

Luminescent chiral metal-organic frameworks (CMOFs) are promising candidates for the enantioselective sensing of important chiral molecules. Herein, we report the synthesis and characterization of Zn and Cd CMOFs based on 1,1'-bi-2-naphthol (BINOL)-derived 3,3',6,6'-tetra(benzoic acids), H-OEt and H-OH. Four CMOFs, -OEt, -OH, -OEt, and -OH, based on these ligands were crystallographically characterized.

View Article and Find Full Text PDF

Pressure-Induced Emission Enhancement of Multi-Resonance o-Carborane Derivatives via Exciton‒Vibration Coupling Suppression.

Adv Sci (Weinh)

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.

Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.

View Article and Find Full Text PDF

Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.

View Article and Find Full Text PDF

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation.

Dalton Trans

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.

The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.

View Article and Find Full Text PDF

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array.

ACS Sens

January 2025

CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.

View Article and Find Full Text PDF

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

An efficient direct electrolysis method for the synthesis of 1,1,1,3,3,3-hexafluoroisopropyxy substituted imidazo[1,2-]pyridines.

Org Biomol Chem

January 2025

Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.

Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Selective sensing of NH and NO on WSe monolayers based on defect concentration regulation.

Phys Chem Chem Phys

January 2025

College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.

Defect engineering is an important method to control material properties. In this paper, large-scale sampling density functional theory (DFT) was used to investigate the adsorption and sensing behavior of NH and NO on a WSe monolayer, with a focus on the effect of selenium vacancy concentration. The results demonstrate that selectivity is inhibited on a perfect monolayer due to the similar adsorption energy of the two gases, NH and NO, while selectivity can be obtained for both of them under different selenium vacancy concentrations (NH about 2-5.

View Article and Find Full Text PDF

Catalytic asymmetric photocycloaddition reactions mediated by enantioselective radical approaches.

Chem Soc Rev

January 2025

Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.

The use of olefins in the construction of cyclic compounds represents a powerful strategy for advancing the pharmaceutical industry. Photocycloaddition has attracted significant interest from chemists due to its ability to exploit simple and readily available olefins along with their reaction patterns under mild conditions. Moreover, the sustainable and versatile pathways for generating highly reactive intermediates can greatly enrich both substrate diversity and reaction patterns.

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

Objective: The Vizigo sheath, a novel visualizable steerable sheath, has been utilized effectively in the clinical management of atrial fibrillation. However, its application in the ablation of typical atrial flutter (AFL) remains unexplored. This study aims to evaluate and compare the efficacy and safety of the Vizigo sheath against a conventional fixed sheath during catheter ablation for typical AFL.

View Article and Find Full Text PDF

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Accelerated Destruction of Passive Film and Microbial Corrosion of 316L Stainless Steel via Extracellular Electron Transfer.

Angew Chem Int Ed Engl

January 2025

Northeastern University, Corrosion and Protection Center, NO. 3-11, Wenhua Road, Heping District, Shenyang, P. R. China, Shenyang, CHINA.

The dense passive film on 316L stainless steel is the key in its corrosion resistance. Its interactions with an electroactive biofilm are critical in deciphering microbial corrosion. Herein, an in-depth investigation using genetic manipulations and addition of an exogenous electron mediator found that extracellular electron transfer (EET) mediated by the electroactive S.

View Article and Find Full Text PDF

Low Neutralization of SARS-CoV-2 Omicron BA5248, XBB15 and JN1 by Homologous Booster and Breakthrough Infection.

J Med Virol

February 2025

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, P. R. China.

Immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be induced through either infection with the virus or vaccination, providing protection against reinfection or reducing the risk of severe clinical outcomes. In this study, we recruited 172 volunteers who received different vaccination regimens, including 124 individuals who had recovered from breakthrough infections caused by the Omicron variant (27 with 2 doses, 49 with 3 doses, and 48 with 4 doses) and 48 healthy donors who did not experience breakthrough infections (all of whom received a fourth dose during the infection wave). We measured neutralizing antibody levels against Omicron BA.

View Article and Find Full Text PDF

Sub-micrometer LiPSCl regulated cathodic Li kinetics in sulfide based all-solid-state batteries.

Phys Chem Chem Phys

January 2025

School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.

The practical applications of all-solid-state batteries (ASSBs) are hindered by poor Li kinetics in electrodes due to the inadequate contact between the cathode active materials (CAMs) and solid-state electrolytes (SSEs). Therefore, improving the contact interface between CAMs and SSEs is necessary to improve the cathodic Li kinetics by increasing the lithium-ion transport sites. To address this issue, sub-micrometer LiPSCl (SU-LPSC) particles of high specific areas were utilized to fabricate cathodes with high mass loading.

View Article and Find Full Text PDF