238,989 results match your criteria: "P.R. China; Chinese Institute for Brain Research[Affiliation]"

In the electronics field, the demand for polymer-based interface materials with high thermal conductivity is increasing. In this study, a three-dimensional thermally conductive framework was fabricated using a bidirectional freezing technique, incorporating hexagonal boron nitride (h-BN) as the primary filler and polyethylenimine (PEI) as the binder. Moreover, a phosphate ester hyperbranched flame retardant (DTFR) was synthesized.

View Article and Find Full Text PDF

Despite the significant potential of photocatalysis as a robust synthetic tool, the high reactivity of radicals often presents challenges in achieving optimal chemoselectivity. In this study, we demonstrate that this inherent limitation can be strategically harnessed for asymmetric photoredox catalysis. By utilizing a chiral catalyst to facilitate kinetic resolution between the two enantiomers of racemic radical intermediates, one enantiomer selectively undergoes the desired transformation, while noncatalytic side reactions deplete the other enantiomer.

View Article and Find Full Text PDF

Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy.

ACS Biomater Sci Eng

March 2025

Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.

Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.

View Article and Find Full Text PDF

Manganese-based nanoenzymes: from catalytic chemistry to design principle and antitumor/antibacterial therapy.

Nanoscale

March 2025

Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.

Manganese (Mn)-based materials have been extensively investigated for a wide range of biomedical applications owing to their remarkable catalytic chemistry, magnetic resonance imaging (MRI) capacity, biodegradability, low toxicity, and good biosafety. In this review, we first elaborate on the catalytic principle of Mn-based nanoenzymes for antitumor and antibacterial therapy, followed by a comprehensive discussion of the interesting structural design engineering strategies used to achieve multi-dimensional Mn-based nanoarchitectures, such as zero-dimensional (0D) nanoparticles, 1D nanotubes, 2D nanosheets, 3D hollow porous Mn ball, and core-shell nanostructures. Moreover, the therapeutic applications of different Mn-based nanoenzymes, including manganese dioxide (MnO)-based nanoenzymes that can trigger catalytic reactions, Mn-doped metal nanoenzymes and Mn-coordinated nanoenzymes that promote hydroxyl/reactive oxygen species (ROS) generation, and MnO-based micro/nanorobots that can effectively penetrate tumor tissues, are critically reviewed.

View Article and Find Full Text PDF

Layered vanadium-based oxides with preintercalated metal cations are attracting extensive attention as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to the increase in structural stability originating from the pillar effect. However, the strong electrostatic interaction between the rigid metal cation pillars and zinc ions results in sluggish ionic transport, thereby limiting the high-rate performance. Herein, a layered vanadium-based oxide with protonated 1,4-diaminobutane organic cation (BDA) pillars is designed as a cathode material for AZIBs.

View Article and Find Full Text PDF

Single -crystal sodium nickel phosphate nanoparticles as supercapacitor cathodes with ultra-high capacitance and rate-performance.

Nanoscale

March 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an, 710062, P. R. China.

Sodium nickel phosphate (NaNiPO, NNP) is an attractive cathode material for high performance supercapacitors due to its abundance of active sites for oxidation/reduction, highly stable framework structure, . However, its disadvantages of low electric conductivity, disturbances of its impure crystalline phase, and the numerous pores/gaps produced by agglomerated polycrystalline morphologies in this cathode often limit its electrochemical performance. Herein, single-crystalline NNP rod-like nanoparticles with high phase purity have been prepared by spontaneous combustion combined with subsequent solid-phase calcination.

View Article and Find Full Text PDF

Weakly solvated perfluorinated electrolyte for high-temperature sodium-layered oxide cathodes.

Chem Commun (Camb)

March 2025

Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, China.

The stability of the electrode-electrolyte interface in layered oxides is enhanced by electrolyte design criteria. A weakly-solvated electrolyte containing ethyl trifluoroacetate solvents with perfluorinated functional groups can restrain electrolyte decomposition and structural degradation when subjected to heat attack, exhibiting superior cycling durability at 60 °C compared to other fluorinated electrolytes.

View Article and Find Full Text PDF

Hard carbon is the sole anode material employed in commercial sodium-ion batteries. However, its intrinsic defects and impurities will lead to battery failure, diminishing further development of sodium batteries in energy storage. Here, an acrylonitrile copolymer and poly(ethylene oxide) (LA/PEO) composite binder is developed to address these challenges in biomass-derived hard carbon.

View Article and Find Full Text PDF

The asymmetric -selective hydrogenation of arenes has long been a significant challenge. In this work, we were able to control the / selectivity in ruthenium-catalyzed asymmetric hydrogenation of 2,3-disubstituted quinoxalines by varying the catalyst counteranion. Using density functional theory calculations, we investigated the weak interactions─such as CH/π and hydrogen bonding─among the counteranion, the catalyst framework, and the substrate, elucidating the fundamental influence of counteranions on / selectivity in the asymmetric hydrogenation of quinoxalines.

View Article and Find Full Text PDF

Backgrounds And Aims: Achalasia is an acquired esophageal neurodegenerative disorder, characterized by selective loss of inhibitory neurons in the myenteric plexus of the lower esophageal sphincter (LES). The Enteric neural precursor cell (ENPC) is essential in maintaining neurogenesis, but its role in achalasia pathogenesis is unknown. This study aimed to explore the neurogenesis status in the LES among achalasia patients.

View Article and Find Full Text PDF

Mesoporous Nanogel Sprays as Universal Evaporation Interface Modifiers for Boosting Water-Cluster Evaporation.

Adv Mater

March 2025

School of Marine Science and Engineering, School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China.

Accelerating water evaporation is vital for processes like photosynthesis, dehydration, and desalination. Optimizing the pore structure and interfacial properties of evaporative materials can reduce evaporation enthalpy and increase efficiency. However, integrating the evaporation interface with water transport channels poses significant design challenges and complicates low-enthalpy evaporation analysis.

View Article and Find Full Text PDF

A Comprehensive Review of Traditional Chinese Medicine in the Management of Ulcerative Colitis.

Am J Chin Med

March 2025

School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China.

Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disorder characterized by symptoms such as abdominal pain, diarrhea, hematochezia, and urgency during defecation. While the primary site of involvement is the colon, UC can extend to encompass the entire rectum and colon. The causes and development mechanisms of UC are still not well understood; nonetheless, it is currently held that factors including environmental influences, genetic predispositions, intestinal mucosal integrity, gut microbiota composition, and immune dysregulation contribute to its development.

View Article and Find Full Text PDF

Agrochemicals play a pivotal role in the management of pests and diseases and the way agrochemicals are utilized exerts significant impacts on the environment. Ensuring rational application and improving utilization rates of agrochemicals are major demands in developing green delivery systems. Herein, a model of nucleic acid-peptide coacervate (NPC) for agrochemical delivery is presented, which is formed by mixing negatively charged single-stranded DNAs with positively charged poly-L-lysine.

View Article and Find Full Text PDF

Galvanic Cell Bipolar Microneedle Patches for Reversing Photoaging Wrinkles.

Adv Mater

March 2025

Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China.

Excessive exposure to ultraviolet (UV) radiation is a major factor in the development of skin photoaging wrinkles. While current treatments can slow the progression of photoaging, it is very difficult to achieve complete reversal. This study introduces galvanic cell microneedle (GCMN) patches with magnesium-containing bipolar electrodes.

View Article and Find Full Text PDF

Tracking In Vivo Lipolysis of Lipid Nanocarriers Using NIR-II Polarity-Sensitive Fluorescent Probes.

Small Methods

March 2025

School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, P. R. China.

Elucidating in vivo lipolysis is crucial for clarifying the underlying mechanisms and in vivo fates of lipid-based nanocarriers, which are essential oral drug delivery carriers. Current mainstream methodologies use various in vitro digestion models to predict the in vivo performance of lipid formulations; however, their accuracy is often impeded by the complicated environment of the gastrointestinal tract. Although fluorescence labeling with conventional probes partly reveals the in vivo translocation of lipid nanocarriers, it fails to elucidate the lipolysis process because of poor signal discrimination among nanocarriers, free probes, and mixed micelles (lipolysis end-products).

View Article and Find Full Text PDF

Background: Liver fibrosis is characterized by hepatic stellate cell (HSC) activation and collagen overproduction, but its pathogenesis remains largely unknown. This study aimed to uncover the role of neural precursor cell expressed developmentally downregulated 4-like (Nedd4L) signaling in liver fibrosis and its relationship with gut microbiota.

Methods: Intraperitoneal injection of carbon tetrachloride (CCl) was used to induce liver fibrosis in 8-week-old female C57BL/6J mice with knockout or administration of the Nedd4L protein phosphorylation inhibitor EMD638683.

View Article and Find Full Text PDF

Etiologies of exocrine pancreatic insufficiency.

Gastroenterol Rep (Oxf)

March 2025

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, P. R. China.

Exocrine pancreatic insufficiency (EPI) is a major cause of maldigestion and malnutrition, resulting from primary pancreatic diseases or other conditions. As the prevalence of EPI continues to rise, accurate identification of its etiology has become critical for the diagnosis and treatment of pancreatic secretory insufficiency. EPI can result from both pancreatic and non-pancreatic disorders.

View Article and Find Full Text PDF

Tension-compression asymmetry of gradient nanograined high-entropy alloys.

RSC Adv

March 2025

Hubei Longzhong Laboratory Xiangyang 441000 Hubei China.

This study investigates the mechanical responses and deformation mechanisms of CoCrFeMnNi high-entropy alloy (HEA) with varying grain size gradients through molecular dynamics simulations, and explores the tension-compression asymmetry of gradient nanograined high-entropy alloy (G-HEA) under different loading conditions. In the early stage of plastic deformation, the normal stress and shear strain of G-HEA both exhibit gradient distribution characteristics under compression and tension. However, as the engineering strain increased, these gradient distribution characteristics gradually diminished and ultimately disappeared.

View Article and Find Full Text PDF

Due to the lack of inherent geometric symmetry present in the structures of aluminum oxide clusters, determining their stable configuration becomes an exceedingly formidable task computationally. In this comprehensive analysis, we first propose the most stable state of AlO, determined through Density Functional Theory calculations at ωB97XD/Def2-TZVP level of theory. Multiple structural isomers were scrutinized for their stability and spin state, with the optimal structure determined using the bee colony algorithm for global optimization.

View Article and Find Full Text PDF

Nanofibrous Chitin Clusters Constructed via Controllable Crystalline Structure Transition for 3D Functional Materials.

Small

March 2025

Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China.

Intensively studied polymeric particle production technologies often rely on the combination of polymer self-assembly and particle processing techniques. Herein, an elegant crystallization transition-mediated strategy is proposed to confine molecular self-assembly within a limited range, avoiding the need for extra particle processing steps. This approach enables the production of the regenerated nanofibrous chitin clusters woven with the helical nanofibers.

View Article and Find Full Text PDF

The terminal alkyne-Au interaction is emerging as a promising adsorbing bonding motif for organic monolayers, allowing it to be used for installing antifouling layers and/or recognition elements on gold surfaces for biosensing applications. In contrast to the well-known thiol-on-gold monolayers, the long-term hydrolytic, thermal, and electrochemical stability of the alkyne-Au bond remains relatively unexplored. Insight into these is, however, essential to deliver on the promise of the alkyne-Au bond for (bio)sensing applications, and to see under which conditions they might replace thiolate-gold bonds, if the latter are insufficiently stable due to, e.

View Article and Find Full Text PDF

A supramolecular polypseudorotaxane material based on novel pillar[5]arene for ultrasensitive Fe reaction.

Anal Methods

March 2025

Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China.

In this study, a novel linear supramolecular polypseudorotaxane was synthesized using a pillar[5]arene derivative (CP5) as the host and bis-bromohexyl pillar[5]arene (DP5) as the guest, facilitated by host-guest interactions. Subsequently, these components self-assembled to create an AIE-active material (CPDP-G) through C-H⋯π interactions involving the pillar[5]arene groups. Notably, the CPDP-G fluorescence material exhibits an exceptionally sensitive response to Fe, with a detection limit of 0.

View Article and Find Full Text PDF

Halogenated antibiotics pose a great threat to aqueous environments because of their persistent biotoxicity from carbon-halogen bonds. Electrochemical reduction (ER) is an efficient technology for dehalogenation, but it still suffers from limited efficiencies in breaking C-F bonds. Herein, we present a strategy to enhance C-F cleavage and promote detoxification by loading benchmark palladium cathodes onto boron-doped carbon.

View Article and Find Full Text PDF

Melatonin Increased Autophagy Level to Facilitate Osteogenesis of Inflamed PDLSCs Through TMEM110 Signaling Pathways.

J Pineal Res

March 2025

Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, China.

Periodontal ligament stem cells (PDLSCs) bring new hope to patients with poor periodontium recovery and impaired regeneration. However, the complex inflammatory microenvironment continually inhibits stem cell function and hinders stem cell therapy effectiveness. Melatonin is a naturally occurring neurohormone that participates in the regulation of a large spectrum of biological functions.

View Article and Find Full Text PDF