27 results match your criteria: "Oxford Parkinson's Disease Centre (OPDC)[Affiliation]"
Ann Clin Transl Neurol
September 2023
Department of Human Genetics, McGill University, Montréal, Québec, Canada.
medRxiv
April 2023
Department of Human Genetics, McGill University, Montréal, QC, Canada.
Nat Commun
December 2022
Department of Human Genetics, McGill University, Montréal, QC, Canada.
Clin Neurophysiol
April 2021
University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK.
Objective: Rapid-Eye-Movement (REM) sleep behaviour disorder (RBD) is an early predictor of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This study investigated the use of a minimal set of sensors to achieve effective screening for RBD in the population, integrating automated sleep staging (three state) followed by RBD detection without the need for cumbersome electroencephalogram (EEG) sensors.
Methods: Polysomnography signals from 50 participants with RBD and 50 age-matched healthy controls were used to evaluate this study.
Neurology
March 2021
From the Department of Human Genetics (K.M., E.Y., U.R., L.K., G.A.R., Z.G.-O.), Montreal Neurological Institute (K.M., E.Y., U.R., L.K., J.A.R., F.A., S.B.L., D.S., G.A.R., R.B.P., Z.G.-O.), Department of Neurology and Neurosurgery (J.A.R., F.A., S.B.L., D.S., G.A.R., R.B.P., Z.G.-O.), Centre de Recherche en Biologie Structurale (J.-F.T.), and Department of Pharmacology and Therapeutics (J.-F.T.), McGill University, Montréal, Quebec, Canada; Sleep Disorders Unit (I.A.), Pitié Salpêtrière Hospital, Paris Brain Institute and Sorbonne University, France; Oxford Parkinson's Disease Centre (OPDC) (M.T.M.H.) and Nuffield Department of Clinical Neurosciences (M.T.M.H.), University of Oxford, UK; Center for Advanced Research in Sleep Medicine (J.Y.M., J.-F.G., A.D., R.B.P.), Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal; Departments of Psychiatry (J.Y.M.) and Neurosciences (A.D.), Université de Montréal; Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada; National Reference Center for Narcolepsy (Y.D.), Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, France; Clinical Neurology Unit (G.L.G., M.V., F.J., A.B.), Department of Neurosciences, University Hospital of Udine; DMIF (G.L.G.) and Department of Medicine (DAME) (M.V.), University of Udine, Italy; Sleep Disorders Clinic (B.H., A.S., E.H.), Department of Neurology, Medical University of Innsbruck, Austria; Department of Neurology (K.S., D.K.) and Centre of Clinical Neuroscience (K.S., D.K.), Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic; Department of Neurology (W.O., A.J., F.S.-D.), Philipps University, Marburg, Germany; Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia; IRCCS (G.P.), Institute of Neurological Sciences of Bologna; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical Sciences and Public Health (M.F., M.P.), Sleep Disorder Research Center, University of Cagliari, Italy; Paracelsus-Elena-Klinik (B.M., C.T., F.S.-D.), Kassel; Department of Neurosurgery (B.M., C.T.), University Medical Centre Göttingen, Germany; Sleep and Neurology Unit (V.C.D.C.), Beau Soleil Clinic; EuroMov Digital Health in Motion (V.C.D.C.), University of Montpellier IMT Mines Ales; University Lille North of France (C.C.M.), Department of Clinical Neurophysiology and Sleep Center, CHU Lille; Department of Sleep Medicine and Neuromuscular Disorders (A.H.), University of Müenster, Germany; Department of Neurological Sciences (L.F.-S.), Università Vita-Salute San Raffaele, Milan, Italy; Laboratory for Sleep Disorders (F.D., M.V.) and Department of Neurology (F.D., M.V.), St. Dimpna Regional Hospital, Geel; Department of Neurology (F.D.), University Hospital Antwerp, Edegem, Belgium; Sleep Disorder Unit (B.A.), Carémeau Hospital, University Hospital of Nîmes, France; and Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN.
Objective: To examine the role of genes identified through genome-wide association studies (GWASs) of Parkinson disease (PD) in the risk of isolated REM sleep behavior disorder (iRBD).
Methods: We fully sequenced 25 genes previously identified in GWASs of PD in a total of 1,039 patients with iRBD and 1,852 controls. The role of rare heterozygous variants in these genes was examined with burden tests.
Mov Disord
January 2021
Department of Human Genetics, McGill University, Montréal, Québec, Canada.
Background: There is only partial overlap in the genetic background of isolated rapid-eye-movement sleep behavior disorder (iRBD) and Parkinson's disease (PD).
Objective: To examine the role of autosomal dominant and recessive PD or atypical parkinsonism genes in the risk of iRBD.
Methods: Ten genes, comprising the recessive genes PRKN, DJ-1 (PARK7), PINK1, VPS13C, ATP13A2, FBXO7, and PLA2G6 and the dominant genes LRRK2, GCH1, and VPS35, were fully sequenced in 1039 iRBD patients and 1852 controls of European ancestry, followed by association tests.
Parkinsonism Relat Disord
October 2020
Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA.
Objective: To develop a patient/care-giver reported scale capable of easily and reliably assessing functional disability in 4 repeat tauopathies (4RTs).
Background: 4R tauopathies including progressive supranuclear palsy, corticobasal degeneration and a subset of frontotemporal dementias manifest a range of overlapping clinical phenotypes. No available rating scale is capable of evaluating the functional impact of these complex disorders.
Neurobiol Aging
September 2020
Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada. Electronic address:
Mov Disord
January 2020
Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, United Kingdom.
Ann Clin Transl Neurol
August 2019
Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK.
Objective: We recently demonstrated that 998 features derived from a simple 7-minute smartphone test could distinguish between controls, people with Parkinson's and people with idiopathic Rapid Eye Movement sleep behavior disorder, with mean sensitivity/specificity values of 84.6-91.9%.
View Article and Find Full Text PDFNeurobiol Dis
July 2019
Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. Electronic address:
Background: Mutations in LRRK2 are the most common cause of autosomal dominant Parkinson's disease, and the relevance of LRRK2 to the sporadic form of the disease is becoming ever more apparent. It is therefore essential that studies are conducted to improve our understanding of the cellular role of this protein. Here we use multiple models and techniques to identify the pathways through which LRRK2 mutations may lead to the development of Parkinson's disease.
View Article and Find Full Text PDFBrain
March 2019
Department of Neurology, McGill University, Montreal General Hospital, Montreal, Canada.
Idiopathic REM sleep behaviour disorder (iRBD) is a powerful early sign of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This provides an unprecedented opportunity to directly observe prodromal neurodegenerative states, and potentially intervene with neuroprotective therapy. For future neuroprotective trials, it is essential to accurately estimate phenoconversion rate and identify potential predictors of phenoconversion.
View Article and Find Full Text PDFClin Neurophysiol
April 2019
University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK.
Objective: Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification.
Methods: Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls.
Neurology
October 2018
From the Oxford Parkinson's Disease Centre (OPDC) (S.A., F.B., C.L., T.R.B., M.R., C.R., J.C.K., J.R., A.L., R.W.-M, M.T.H.), University of Oxford, UK; Engineering and Applied Science (S.A., M.A.L.), Aston University, Birmingham, UK; Somerville College (S.A.), University of Oxford, UK; Nuffield Department of Clinical Neurosciences (F.B., C.L., T.R.B., M.A.L., M.T.H.), University of Oxford, UK; Population Health Sciences (M.A.L.), University of Bristol, UK; andDepartment of Computer Science (A.Z.), Johns Hopkins University, Baltimore; Department of Neurology and Neurophysiology (Z.Z., G.L., M.T.H.), Oxford University Hospitals NHS Trust, UK; Respiratory Support and Sleep Centre (T.Q.), Papworth Hospital, Cambridge, UK; Department of Neurology (G.D.), Royal Hallamshire Hospital, Sheffield, UK; and Media Lab (M.A.L.), Massachusetts Institute of Technology, Cambridge, MA.
Objective: We sought to identify motor features that would allow the delineation of individuals with sleep study-confirmed idiopathic REM sleep behavior disorder (iRBD) from controls and Parkinson disease (PD) using a customized smartphone application.
Methods: A total of 334 PD, 104 iRBD, and 84 control participants performed 7 tasks to evaluate voice, balance, gait, finger tapping, reaction time, rest tremor, and postural tremor. Smartphone recordings were collected both in clinic and at home under noncontrolled conditions over several days.
Mov Disord
July 2018
Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
Background: MAPT haplotypes are associated with PD, but their association with rapid eye movement sleep behavior disorder is unclear.
Objective: To study the role of MAPT variants in rapid eye movement sleep behavior disorder.
Methods: Two cohorts were included: (A) PD (n = 600), rapid eye movement sleep behavior disorder (n = 613) patients, and controls (n = 981); (B) dementia with Lewy bodies patients with rapid eye movement sleep behavior disorder (n = 271) and controls (n = 950).
Parkinsonism Relat Disord
July 2018
Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 0G4, Canada, Canada; Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada. Electronic address:
Background: Individuals with rapid eye movement (REM)-sleep behavior disorder (RBD) are likely to progress to synucleinopathies, mainly Parkinson's disease (PD), dementia with Lewy-bodies (DLB) and multiple system atrophy (MSA). The genetics of RBD only partially overlaps with PD and DLB, and the role of LRRK2 variants in risk for RBD is still not clear.
Methods: The full coding sequence, exon-intron boundaries and 5' and 3' untranslated regions of LRRK2 were sequenced using targeted next-generation sequencing.
Brain Imaging Behav
December 2018
Oxford Parkinson's Disease Centre (OPDC), Oxford, UK.
Changes in functional connectivity (FC) measured using resting state fMRI within the basal ganglia network (BGN) have been observed in pathologies with altered neurotransmitter systems and conditions involving motor control and dopaminergic processes. However, less is known about non-disease factors affecting FC in the BGN. The aim of this study was to examine associations of FC within the BGN with dopaminergic processes in healthy older adults.
View Article and Find Full Text PDFSleep
October 2017
Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK.
Neuroimage Clin
March 2018
Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK. Electronic address:
The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease.
View Article and Find Full Text PDFSleep
August 2017
Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.
Objectives: Rapid eye movement (REM) sleep behavior disorder (RBD) is the most specific marker of prodromal alpha-synucleinopathies. We sought to delineate the baseline clinical characteristics of RBD and evaluate risk stratification models.
Methods: Clinical assessments were performed in 171 RBD, 296 control, and 119 untreated Parkinson's (PD) participants.
Neurobiol Aging
January 2017
Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.
The present study aimed to examine whether the APOE ε4 allele, associated with dementia with Lewy bodies (DLB), and possibly with dementia in Parkinson's disease (PD), is also associated with idiopathic rapid eye movement sleep behavior disorder (RBD). Two single nucleotide polymorphisms, rs429358 and rs7412, were genotyped in RBD patients (n = 480) and in controls (n = 823). APOE ε4 allele frequency was 0.
View Article and Find Full Text PDFBrain
August 2016
1 Oxford Parkinson's Disease Centre (OPDC), Oxford, UK 2 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder.
View Article and Find Full Text PDFBrain
January 2016
1 Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK 2 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls.
View Article and Find Full Text PDFNeuroimage
January 2016
Centre for the functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK. Electronic address:
Resting state fMRI (rfMRI) is gaining in popularity, being easy to acquire and with promising clinical applications. However, rfMRI studies, especially those involving clinical groups, still lack reproducibility, largely due to the different analysis settings. This is particularly important for the development of imaging biomarkers.
View Article and Find Full Text PDFNeuroimage Clin
March 2016
Oxford Parkinson's Disease Centre (OPDC), Oxford, UK ; Centre for the Functional MRI of the Brain (FMRIB), Oxford, UK ; Department of Psychiatry, University of Oxford, Oxford, UK.
Resting state functional MRI (rs-fMRI) has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD). In order to assess whether changes within the basal ganglia network (BGN) are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD). Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls.
View Article and Find Full Text PDF