117 results match your criteria: "Oregon Institute of Marine Biology[Affiliation]"

Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.

View Article and Find Full Text PDF

Non-viral predators of marine picocyanobacteria.

Trends Microbiol

December 2024

Department of Biology, Portland State University, PO Box 751, Portland, OR 97201, USA. Electronic address:

The Earth's most abundant photosynthetic cells, the picocyanobacteria - Prochlorococcus and Synechococcus - play a fundamental global role in aquatic ecosystems. The success of these picocyanobacteria is interpreted through a cross-scale systems framework that integrates bottom-up controls on growth (e.g.

View Article and Find Full Text PDF

The diversity of nemerteans along the Pacific coast of the United States is regarded as well characterized, but there remain many cryptic, undescribed, and "orphan" species (those known only in their larval form). Recent sampling of nemerteans in Oregon and Washington has begun to fill in these taxonomic gaps, but nemertean diversity in California has received relatively little attention over the past 60 years. During the summers of 2019 and 2020, nemertean specimens were collected from 20 locations in the Bodega Bay region of northern California, USA, including rocky intertidal shores, sandy beaches, mudflats, and other habitats.

View Article and Find Full Text PDF

Helical motion is prevalent in nature and has been shown to confer stability and efficiency in microorganisms. However, the mechanics of helical locomotion in larger organisms (>1 centimeter) remain unknown. In the open ocean, we observed the chain forming salp, , swimming in helices.

View Article and Find Full Text PDF

The mechanism of mortality plays a large role in how microorganisms in the open ocean contribute to global energy and nutrient cycling. Salps are ubiquitous pelagic tunicates that are a well-known mortality source for large phototrophic microorganisms in coastal and high-latitude systems, but their impact on the immense populations of smaller prokaryotes in the tropical and subtropical open ocean gyres is not well quantified. We used robustly quantitative techniques to measure salp clearance and enrichment of specific microbial functional groups in the North Pacific Subtropical Gyre, one of the largest ecosystems on Earth.

View Article and Find Full Text PDF

The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation.

View Article and Find Full Text PDF

Planktonic organisms feed while suspended in water using various hydrodynamic pumping strategies. Appendicularians are a unique group of plankton that use their tail to pump water over mucous mesh filters to concentrate food particles. As ubiquitous and often abundant members of planktonic ecosystems, they play a major role in oceanic food webs.

View Article and Find Full Text PDF

Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival.

View Article and Find Full Text PDF

The marine ribbon worm genus Chernyshev, 1992 currently includes three species: the type species (Quatrefages, 1846) from the Mediterranean Sea, (Kirsteuer, 1965) from Madagascar, and (Gibson, 1982) from Australia. Seven new species are described: , , , and from the Caribbean Sea (Panamá), and three species, , , and , from the Indo-West Pacific (Japan and Oman). As a result, an amended morphological diagnosis of the genus is offered.

View Article and Find Full Text PDF

Most marine invertebrate larvae either obligately feed or depend on maternally provided reserves during planktonic development. A small number of species have the capacity to do both, in a mode of development known as facultative planktotrophy. We describe facultative feeding in a larva from the Oregon coast, and identify it as being an undescribed species in the genus , which we refer to as sp.

View Article and Find Full Text PDF

Sunflower sea star predation on urchins can facilitate kelp forest recovery.

Proc Biol Sci

February 2023

Oregon Institute of Marine Biology, Department of Biology, University of Oregon, 63466 Boat Basin Road, Charleston OR 97420, USA.

The recent collapse of predatory sunflower sea stars () owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins () typical of barrens. consumed 0.

View Article and Find Full Text PDF

Oceanic ctenophores are widespread predators on pelagic zooplankton. While data on coastal ctenophores often show strong top-down predatory impacts in their ecosystems, differing morphologies, prey capture mechanisms and behaviors of oceanic species preclude the use of coastal data to draw conclusion on oceanic species. We used high-resolution imaging methods both in situ and in the laboratory to quantify interactions of Ocyropsis spp.

View Article and Find Full Text PDF

Microbial mortality impacts the structure of food webs, carbon flow, and the interactions that create dynamic patterns of abundance across gradients in space and time in diverse ecosystems. In the oceans, estimates of microbial mortality by viruses, protists, and small zooplankton do not account fully for observations of loss, suggesting the existence of underappreciated mortality sources. We examined how ubiquitous mucous mesh feeders (i.

View Article and Find Full Text PDF

Many fishes employ distinct swimming modes for routine swimming and predator escape. These steady and escape swimming modes are characterized by dramatically differing body kinematics that lead to context-adaptive differences in swimming performance. Physonect siphonophores, such as , are colonial cnidarians that produce multiple jets for propulsion using swimming subunits called nectophores.

View Article and Find Full Text PDF

Dominance of in Metagenomes Associated with the Methane Ice Worm (Sirsoe methanicola).

Appl Environ Microbiol

August 2022

Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA.

Sirsoe methanicola, commonly known as the methane ice worm, is the only macrofaunal species known to inhabit the Gulf of Mexico methane hydrates. Little is known about this elusive marine polychaete that can colonize rich carbon and energy reserves. Metagenomic analysis of gut contents and worm fragments predicted diverse metabolic capabilities with the ability to utilize a range of nitrogen, sulfur, and organic carbon compounds through microbial taxa affiliated with , , , , , and .

View Article and Find Full Text PDF

Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood.

View Article and Find Full Text PDF

Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown.

View Article and Find Full Text PDF

Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths.

View Article and Find Full Text PDF

Anthropogenic debris has been reported in all studied marine environments, including the deepest parts of the sea. Finding areas of accumulation and methods of transport for debris are important to determine potential impacts on marine life. This study analyzed both sediment cores and Remotely Operated Vehicle video to determine the density and distribution of debris, including both micro- and macroplastics, in Norfolk and Baltimore canyons.

View Article and Find Full Text PDF

To better understand the decline of one of earth's most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network's biodiversity monitoring program at Carrie Bow Cay, Belize.

View Article and Find Full Text PDF

Cryptic species are a common phenomenon in cosmopolitan marine species. The use of molecular tools has often uncovered cryptic species occupying a fraction of the geographic range of the original morphospecies. Shipworms (Teredinidae) are marine bivalves, living in drift and fixed wood, many of which have a conserved morphology across cosmopolitan distributions.

View Article and Find Full Text PDF

Pulsatile jet propulsion is a common swimming mode used by a diverse array of aquatic taxa from chordates to cnidarians. This mode of locomotion has interested both biologists and engineers for over a century. A central issue to understanding the important features of jet-propelling animals is to determine how the animal interacts with the surrounding fluid.

View Article and Find Full Text PDF

Cortical excitability and cell division.

Curr Biol

May 2021

Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA. Electronic address:

As the interface between the cell and its environment, the cell cortex must be able to respond to a variety of external stimuli. This is made possible in part by cortical excitability, a behavior driven by coupled positive and negative feedback loops that generate propagating waves of actin assembly in the cell cortex. Cortical excitability is best known for promoting cell protrusion and allowing the interpretation of and response to chemoattractant gradients in migrating cells.

View Article and Find Full Text PDF

Stimpson, 1857, a barnacle predator, is one of the most common and conspicuous intertidal nemerteans found along the West Coast of North America from Alaska to California, but it is currently referred to by the wrong name. Briefly described without designation of type material or illustrations, the species was synonymized with the Atlantic look-alike, (Johnston, 1837) by Coe. Here we present morphological and molecular evidence that is distinct from .

View Article and Find Full Text PDF