13 results match your criteria: "Okinawa Institute of Science and Technology Okinawa[Affiliation]"

Polythiophenes are one of the most widely studied conjugated polymers. With the discovery of the chain mechanism of Kumada catalyst-transfer polymerisation (KCTP), various polythiophene copolymer structures, such as random, block, and gradient copolymers, have been synthesized batch or semi-batch (sequential addition) methods. However, the lack of quantitative kinetic data for thiophene monomers brings challenges to experimental design and structure prediction when synthesizing the copolymers.

View Article and Find Full Text PDF

The evolution of convergent phenotypes is one of the most interesting phenomena of repeated adaptive radiations. Here, we examined the repeated patterns of thick-lipped or "rubberlip" phenotype of cyprinid fish of the genus discovered in riverine environments of the Ethiopian Highlands, East Africa. To test the adaptive value of thickened lips, identify the ecological niche of the thick-lipped ecomorphs, and test whether these ecomorphs are the products of adaptive divergence, we studied six sympatric pairs of ecomorphs with hypertrophied lips and the normal lip structure from different riverine basins.

View Article and Find Full Text PDF

The distribution of species among spatially isolated habitat patches supports regional biodiversity and stability, so understanding the underlying processes and structure is a key target of conservation. Although multivariate statistics can infer the connectivity processes driving species distribution, such as dispersal and habitat suitability, they rarely explore the structure. Methods from graph theory, applied to distribution data, give insights into both connectivity pathways and processes by intuitively formatting the data as a network of habitat patches.

View Article and Find Full Text PDF

A Model of Induction of Cerebellar Long-Term Depression Including RKIP Inactivation of Raf and MEK.

Front Mol Neurosci

February 2017

Computational Neuroscience Unit, Okinawa Institute of Science and TechnologyOkinawa, Japan; Theoretical Neurobiology, University of AntwerpAntwerp, Belgium.

We report an updated stochastic model of cerebellar Long Term Depression (LTD) with improved realism. Firstly, we verify experimentally that dissociation of Raf kinase inhibitor protein (RKIP) from Mitogen-activated protein kinase kinase (MEK) is required for cerebellar LTD and add this interaction to an earlier published model, along with the known requirement of dissociation of RKIP from Raf kinase. We update Ca dynamics as a constant-rate influx, which captures experimental input profiles accurately.

View Article and Find Full Text PDF

The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth.

View Article and Find Full Text PDF

A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.

Front Neuroinform

October 2015

Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich Research Centre Jülich, Germany ; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University Aachen, Germany ; Department of Physics, Faculty 1, RWTH Aachen University Aachen, Germany.

Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network.

View Article and Find Full Text PDF

Identifying problematic drugs based on the characteristics of their targets.

Front Pharmacol

September 2015

Japan Science and Technology Agency ERATO Kawaoka Infection-Induced Host Responses Project Minato-ku, Japan ; The Systems Biology Institute Tokyo, Japan ; Sony Computer Science Laboratories, Inc. Tokyo, Japan ; Integrated Open Systems Unit, Okinawa Institute of Science and Technology Okinawa, Japan ; Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences Yokohama, Japan.

Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds.

View Article and Find Full Text PDF

Spiking network simulation code for petascale computers.

Front Neuroinform

October 2014

Programming Environment Research Team, RIKEN Advanced Institute for Computational Science Kobe, Japan ; Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA Jülich, Germany.

Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron.

View Article and Find Full Text PDF

Killing is perhaps the most definite form of communication possible. Microbes such as yeasts and gut bacteria have been shown to exhibit killer phenotypes. The killer strains are able to kill other microbes occupying the same ecological niche, and do so with impunity.

View Article and Find Full Text PDF

STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects.

View Article and Find Full Text PDF

The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation.

View Article and Find Full Text PDF

The sparse connectivity within the striatum in vivo makes the investigation of individual corticostriatal synapses very difficult. Most studies of the corticostriatal input have been done using electrical stimulation under conditions where it is hard to identify the precise origin of the cortical input. We have employed an in vitro dissociated cell culture system that allows the identification of individual corticostriatal pairs and have been developing methods to study individual neuron inputs to striatal neurons.

View Article and Find Full Text PDF

The phase-response curve (PRC) is an important tool to determine the excitability type of single neurons which reveals consequences for their synchronizing properties. We review five methods to compute the PRC from both model data and experimental data and compare the numerically obtained results from each method. The main difference between the methods lies in the reliability which is influenced by the fluctuations in the spiking data and the number of spikes available for analysis.

View Article and Find Full Text PDF