16 results match your criteria: "Odum School of Ecology University of Georgia Athens GA USA.[Affiliation]"

Many infectious disease forecasting models in the United States (US) are built with data partitioned into geopolitical regions centered on human activity as opposed to regions defined by natural ecosystems; although useful for data collection and intervention, this has the potential to mask biological relationships between the environment and disease. We explored this concept by analyzing the correlations between climate and West Nile virus (WNV) case data aggregated to geopolitical and ecological regions. We compared correlations between minimum, maximum, and mean annual temperature; precipitation; and annual WNV neuroinvasive disease (WNND) case data from 2005 to 2019 when partitioned into (a) climate regions defined by the National Oceanic and Atmospheric Administration (NOAA) and (b) Level I ecoregions defined by the Environmental Protection Agency (EPA).

View Article and Find Full Text PDF

This study describes the evolution of haplotypes in in response to pyrethroid insecticide use over the course of 18 years in Iquitos, Peru. Based on the duration and intensiveness of sampling (~10,000 samples), this is the most thorough study of population genetics in .  to date within a city.

View Article and Find Full Text PDF

A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts ( ) exposed to three naturally co-occurring viruses either singly or jointly (barley and cereal yellow dwarf viruses [B/CYDVs]: CYDV-RPV, BYDV-PAV, and BYDV-SGV) along experimental gradients of nitrogen and phosphorus supply.

View Article and Find Full Text PDF

Anthropogenic climate change threatens the structure and function of ecosystems throughout the globe, but many people are still skeptical of its existence. Traditional "knowledge deficit model" thinking has suggested that providing the public with more facts about climate change will assuage skepticism. However, presenting evidence contrary to prior beliefs can have the opposite effect and result in a strengthening of previously held beliefs, a phenomenon known as biased assimilation or a backfire effect.

View Article and Find Full Text PDF

Pathogen spread rates are determined, in part, by the performance of pathogens under altered environmental conditions and their ability to persist while switching among hosts and vectors.To determine the effects of new conditions (host, vector, and nutrient) on pathogen spread rate, we introduced a vector-borne viral plant pathogen, Barley Yellow Dwarf Virus PAV (BYDV-PAV) into hosts, vectors, and host nutrient supplies that it had not encountered for thousands of viral generations. We quantified pathogen prevalence over the course of two serial inoculations under the new conditions.

View Article and Find Full Text PDF

Simulation models are increasingly used by ecologists to study complex, ecosystem-scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis-driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands-on modeling activities in the classroom affects student learning. Here, we developed short (3-hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data-Driven Inquiry & Exploration) program that engage students with hands-on ecosystem modeling in the R statistical environment.

View Article and Find Full Text PDF

Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life history of thoracican barnacles within a strict phylogenetic framework. We collected environmental and larval trait data for 170 species from the literature, and utilized a complete thoracican synthesis tree to account for phylogenetic nonindependence.

View Article and Find Full Text PDF

Multiple paternity is relatively common across diverse taxa; however, the drivers and implications related to paternal and maternal fitness are not well understood. Several hypotheses have been offered to explain the occurrence and frequency of multiple paternity. One set of hypotheses seeks to explain multiple paternity through direct and indirect benefits including increased genetic diversity or enhanced offspring fitness, whereas another set of hypotheses explains multiple paternity as a by-product of sexual conflict and population-specific parameters such as density.

View Article and Find Full Text PDF

Anthropogenic hybridization of historically isolated taxa has become a primary conservation challenge for many imperiled species. Indeed, hybridization between red wolves () and coyotes () poses a significant challenge to red wolf recovery. We considered seven hypotheses to assess factors influencing hybridization between red wolves and coyotes via pair-bonding between the two species.

View Article and Find Full Text PDF

Global species counts are a key measure of biodiversity and associated metrics of conservation. It is both scientifically and practically important to know how many species exist, how many undescribed species remain, and where they are found. We modify a model for the number of undescribed species using species description data and incorporating taxonomic information.

View Article and Find Full Text PDF

Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape.

View Article and Find Full Text PDF

Although critical to progress in understanding (i) if, and (ii) at what rate, introduced plants will naturalize and potentially become invasive, establishing causal links between traits and invasion success is complicated by data gaps, phylogenetic nonindependence of species, the inability to control for differences between species in residence time and propagule pressure, and covariance among traits. Here, we focus on statistical relationships between genomic factors, life history traits, native range size, and naturalization status of angiosperms introduced to Australia. In a series of analyses, we alternately investigate the role of phylogeny, incorporate introduction history, and use graphical models to explore the network of conditional probabilities linking traits and introduction history to naturalization status.

View Article and Find Full Text PDF

The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used.

View Article and Find Full Text PDF

Functional trait variation within and across populations can strongly influence population, community, and ecosystem processes, but the relative contributions of genetic vs. environmental factors to this variation are often not clear, potentially complicating conservation and restoration efforts. For example, local adaptation, a particular type of genetic by environmental (G*E) interaction in which the fitness of a population in its own habitat is greater than in other habitats, is often invoked in management practices, even in the absence of supporting evidence.

View Article and Find Full Text PDF

Environmental conditions are rarely constant, but instead vary spatially and temporally. This variation influences ecological interactions and epidemiological dynamics, yet most experimental studies examine interactions under constant conditions. We examined the effects of variability in temperature on the host-pathogen relationship between an aquatic zooplankton host () and an environmentally transmitted fungal pathogen ().

View Article and Find Full Text PDF