A PHP Error was encountered

Severity: 8192

Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: helpers/my_audit_helper.php

Line Number: 8900

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8900
Function: str_replace

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3362
Function: formatAIDetailSummary

File: /var/www/html/application/controllers/Search.php
Line: 168
Function: pubMedSearch_Global

File: /var/www/html/index.php
Line: 316
Function: require_once

Novo Nordisk Research Center[Affiliation] Publications | LitMetric

184 results match your criteria: "Novo Nordisk Research Center[Affiliation]"

C-terminal α-amidated peptides are attractive therapeutic targets, but preparative methods to access amidated pharmaceuticals are limited both on lab and manufacturing-scale. Here we report a straightforward and scalable approach to the C-terminal α-amidation of peptides and proteins from cysteine-extended polypeptide precursors. This amidation protocol consists of three highly efficient steps: 1) selective cysteine thiol substitution with a photolabel, 2) photoinduced decarboxylative elimination and 3) enamide cleavage by simple acidolysis or inverse electron demand Diels-Alder reaction.

View Article and Find Full Text PDF

The use of incretin agonists for managing metabolic dysfunction-associated steatohepatitis (MASH) is currently experiencing considerable interest. However, whether these compounds have a direct action on MASH is still under debate. This study aims to investigate whether GLP-1R/GIPR agonists act directly in hepatocytes and hepatic stellate cells (HSCs).

View Article and Find Full Text PDF

Models that accurately predict properties based on chemical structure are valuable tools in the chemical sciences. However, for many properties, public and private training sets are typically small, making it difficult for models to generalize well outside of the training data. Recently, this lack of generalization has been mitigated by using self-supervised pretraining on large unlabeled datasets, followed by finetuning on smaller, labeled datasets.

View Article and Find Full Text PDF

Background: The Network for Pancreatic Organ donors with Diabetes-Kidney (nPOD-K) project was initiated to assess the feasibility of using kidneys from organ donors to enhance understanding of diabetic kidney disease (DKD) progression.

Methods: Traditional and digital pathology approaches were employed to characterize the nPOD-K cohort. Periodic acid-Schiff- and Hematoxylin and Eosin-stained sections were used to manually examine and score each nPOD-K case.

View Article and Find Full Text PDF
Article Synopsis
  • Polycystic ovary syndrome (PCOS) is a complex condition characterized by irregular ovulation, high levels of androgens, and the presence of polycystic ovaries, often leading to metabolic issues like obesity and insulin resistance.
  • Current treatments mainly address symptoms but are often ineffective for the underlying metabolic and reproductive problems.
  • Research shows that a GLP1-based treatment, specifically GLP1/Estrogen (GLP1/E), is more effective in managing PCOS-related metabolic complications and improving ovulation than other multi-agonists and metformin, suggesting a more personalized approach to treatment.
View Article and Find Full Text PDF

Background: Adolescence and early adulthood are pivotal stages for the onset of mental health disorders and the development of health behaviors. Digital behavioral activation interventions, with or without coaching support, hold promise for addressing risk factors for both mental and physical health problems by offering scalable approaches to expand access to evidence-based mental health support.

Objective: This 2-arm pilot randomized controlled trial evaluated 2 versions of a digital behavioral health product, Vira (Ksana Health Inc), for their feasibility, acceptability, and preliminary effectiveness in improving mental health in young adults with depressive symptoms and obesity risk factors.

View Article and Find Full Text PDF

To address the challenges of short half-life, immunogenicity, and nonspecific distribution, chemical modifications of peptide and protein-based drugs have emerged as a versatile strategy for improving their therapeutic efficacy. One such modification involves the derivatization of peptides and proteins with fatty acids, which can protract their half-life, modify their biodistribution, and potentially enable targeted delivery to specific tissues or disease sites of interest. However, the present strategies for the synthesis of such synthetically modified biologics require numerous rounds of experimental testing and often yield unstable, inactive, or heterogeneous products.

View Article and Find Full Text PDF

There has been a dramatic increase in the identification of non-canonical translation and a significant expansion of the protein-coding genome. Among the strategies used to identify unannotated small Open Reading Frames (smORFs) that encode microproteins, Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple genomic sites are removed since they cannot be unambiguously assigned to a specific genomic location.

View Article and Find Full Text PDF

Pharmacokinetic properties and duration of therapeutic action of a pharmaceutical agent can be significantly extended through the combination of two distinct strategies aimed at increasing plasma half-life: fatty acid acylation and Fc-conjugation. Using insulin as a case study, we demonstrate that a doubly protracted insulin analog produces a substantial prolongation of pharmacodynamic effect to lower blood glucose in STZ-treated mice when compared to the Fc-only counterparts. This enhancement is further corroborated by direct pharmacokinetic measurements in rat and dog models, demonstrating the potential for once-monthly insulin therapy.

View Article and Find Full Text PDF

Here, we describe the development of the FGF21 analog zalfermin (NNC0194-0499, ), intended for once-weekly sc dosing. Protein engineering was needed to address inherent druggability issues of the natural FGF21 hormone. Thus, deamidation of Asp121 was solved by mutation to glutamine, and oxidation of Met168 was solved by mutation to leucine.

View Article and Find Full Text PDF

Amylin, a member of the calcitonin family, acts via amylin receptors in the hindbrain and hypothalamus to suppress appetite. Native ligands of these receptors are peptides with short half-lives. Conjugating fatty acids to these peptides can increase their half-lives.

View Article and Find Full Text PDF

Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide and AMG-133 (ref. ) combining GIPR antagonism with GLP-1R agonism.

View Article and Find Full Text PDF

GLP-1-directed NMDA receptor antagonism for obesity treatment.

Nature

May 2024

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease.

View Article and Find Full Text PDF

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHR). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHR using systems genetics.

View Article and Find Full Text PDF

Macrocyclization has positioned itself as a powerful method for engineering potent peptide drug candidates. Introducing one or multiple cyclizations is a common strategy to improve properties such as affinity, bioavailability and proteolytic stability. Consequently, methodologies to create large libraries of polycyclic peptides by phage or mRNA display have emerged, allowing the rapid identification of binders to virtually any target.

View Article and Find Full Text PDF

Loss of GIPR in LEPR cells impairs glucose control by GIP and GIP:GLP-1 co-agonism without affecting body weight and food intake in mice.

Mol Metab

May 2024

Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludgwig-Maximilians-University Munich, Germany. Electronic address:

Objective: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr).

Methods: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis.

View Article and Find Full Text PDF

The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that emerged as a pharmacologic target in cardiometabolic disease, including diabetes and obesity, over 30 years ago. The subsequent widespread clinical use of GLP-1R agonists, including exenatide, liraglutide, and semaglutide, has made the GLP-1R a preeminent model for understanding basic GPCR biology, including the emergent field of biased agonism. Recent data demonstrate that the dual GLP-1R/glucose dependent insulinotropic polypeptide receptor (GIPR) agonist tirzepatide exhibits a biased signaling profile characterized by preferential Gαs activation over β-arrestin recruitment, which appears to contribute to its insulinotropic and body-weight reducing effects in preclinical models.

View Article and Find Full Text PDF

Unbiased kidney-centric molecular categorization of chronic kidney disease as a step towards precision medicine.

Kidney Int

June 2024

Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA. Electronic address:

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls.

View Article and Find Full Text PDF

As our understanding of biological systems grows, so does the need to selectively target individual or multiple members of specific protein families in order to probe their function. Many targets of current biological and pharmaceutical interest are part of a large family of closely related proteins and achieving ligand selectivity often remains either an elusive or time-consuming endeavour. Cyclic peptides (CPs) occupy a key niche in ligand space, able to achieve high affinity and selectivity while retaining synthetic accessibility.

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation.

Kidney Int

January 2024

Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia. Electronic address:

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease.

View Article and Find Full Text PDF

Despite the increasing number of GPCR structures and recent advances in peptide design, the development of efficient technologies allowing rational design of high-affinity peptide ligands for single GPCRs remains an unmet challenge. Here, we develop a computational approach for designing conjugates of lariat-shaped macrocyclized peptides and a small molecule opioid ligand. We demonstrate its feasibility by discovering chemical scaffolds for the kappa-opioid receptor (KOR) with desired pharmacological activities.

View Article and Find Full Text PDF

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical and clinical studies, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified.

View Article and Find Full Text PDF

High quality biological reagents are a prerequisite for pharmacological research. Herein a protein production screening approach, including quality assessment methods, for protein-based discovery research is presented. Trends from 2895 expression constructs representing 253 proteins screened in mammalian and bacterial hosts-91% of which are successfully expressed and purified-are discussed.

View Article and Find Full Text PDF