2 results match your criteria: "Novartis Institutes for Biomedical Research Novartis Pharma AG[Affiliation]"

Mutations in leucine-rich repeat kinase 2 () gene have been pathogenically linked to Parkinson's disease, and pharmacological inhibition of LRRK2 is being pursued to tackle nigro-striatal dopaminergic neurodegeneration. However, LRRK2 kinase inhibitors may have manifold actions, affecting not only pathological mechanisms in dopaminergic neurons but also physiological functions in nondopaminergic neurons. Therefore, we investigated whether LRRK2 kinase inhibitors differentially modulate dopamine and glutamate release from the mouse striatum and cerebral cortex.

View Article and Find Full Text PDF

A common pathological hallmark in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, is the formation of fibrillar protein aggregates referred to as amyloids. The amyloidogenic aggregates were long thought to be toxic, but mounting evidence supports the notion that a variety of amyloid aggregate intermediates to fibril formation, termed oligomers, may in fact be the primary culprit leading to neuronal dysfunction and cell death. While amyloid formation is a complex, heterogeneous process, aggregates formed by diverse, diseases-related proteins share many conformational similarities, suggesting common toxic mechanisms among these diseases.

View Article and Find Full Text PDF